1
|
Fei K, Zhang H, Zhang W, Liao C. MiR-424-5p Inhibits Proliferation, Migration, Invasion and Angiogenesis of the HTR-8/SVneo Cells Through Targeting LRP6 Mediated β-catenin. Reprod Sci 2024; 31:3428-3439. [PMID: 38997540 DOI: 10.1007/s43032-024-01641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
The aim of this study was to investigate the effects of miR-424-5p on biological behaviors and angiogenesis of the HTR-8/SVneo Cells. Our study included 60 parturient women, which were divided into an PA group (placenta accreta, n = 30) and a normal group (normal placenta, n = 30). QPCR was used to measure the expression of miR-424-5p in placental tissues. The effects of the miR-424-5p mimic on proliferation, migration, and invasion of human HTR-8/SVneo cells and angiogenesis were analyzed. The potential modulated relationship between miR-424-5p and low-density lipoprotein receptor-related protein-6 (LRP6) was demonstrated by luciferase assay. The expression of LRP6, β-catenin, matrix metalloproteinase-2 (MMP-2), placental growth factor (PGF) and vascular endothelial growth factor (VEGF) were measured by qPCR and Western blot assays. The expression of miR-424-5p in the PA group was significantly decreased than that in the normal group. The expression of miR-424-5p has negative correlation with blood loss. Upregulation of miR-424-5p significantly suppressed the cell proliferation, migration, and invasion of HTR-8/SVneo cells in vitro, as well as the tube formation of human umbilical vein endothelial cells (HUVECs). The luciferase assay demonstrated that LRP6 was a target of miR-424-5p. The expression of LRP6, β-catenin, MMP-2, PGF and VEGF were also decreased with upregulation of miR-424-5p (p < 0.05). The inhibitory effects of miR-424-5p on HTR-8/SVneo cells and angiogenesis were enhanced by downregulation of LRP6, but were reversed by upregulation of LRP6. The present study suggests that downregulation of miR-424-5p is related to the occurrence of PA. Enhancing miR-424-5p inhibits proliferation, migration, invasion and angiogenesis of the HTR-8/SVneo cells through targeting LRP6 mediated β-catenin, providing more insights about PA.
Collapse
Affiliation(s)
- Kuilin Fei
- The First School of Clinical Medicine, Southern Medical University, Guang Zhou, China
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Zhang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Hospital Administration, University of South China, Hengyang, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Can Liao
- The First School of Clinical Medicine, Southern Medical University, Guang Zhou, China.
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
2
|
Arderiu G, Civit-Urgell A, Díez-Caballero A, Moscatiello F, Ballesta C, Badimon L. Differentiation of Adipose Tissue Mesenchymal Stem Cells into Endothelial Cells Depends on Fat Depot Conditions: Regulation by miRNA. Cells 2024; 13:513. [PMID: 38534357 DOI: 10.3390/cells13060513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The development of obesity is associated with substantial modulation of adipose tissue (AT) structure. The plasticity of the AT is reflected by its remarkable ability to expand or reduce in size throughout the adult lifespan, which is linked to the development of its vasculature. This increase in AT vasculature could be mediated by the differentiation of adipose tissue-derived stem cells (ASCs) into endothelial cells (ECs) and form new microvasculature. We have already shown that microRNA (miRNA)-145 regulates the differentiation of ASCs into EC-like (ECL) cells. Here, we investigated whether ASCs-differentiation into ECs is governed by a miRNAs signature that depends on fat depot location and /or the metabolic condition produced by obesity. Human ASCs, which were obtained from white AT by surgical procedures from lean and obese patients, were induced to differentiate into ECL cells. We have identified that miRNA-29b-3p in both subcutaneous (s)ASCs and visceral ASCs and miRNA-424-5p and miRNA-378a-3p in subcutaneous (s)ASCs are involved in differentiation into EC-like cells. These miRNAs modulate their pro-angiogenic effects on ASCs by targeting FGFR1, NRP2, MAPK1, and TGF-β2, and the MAPK signaling pathway. We show for the first time that miRNA-29b-3p upregulation contributes to ASCs' differentiation into ECL cells by directly targeting TGFB2 in both sASCs and visceral ASCs. Moreover, our results reveal that, independent of sASCs' origin (obese/lean), the upregulation of miRNA-378a-3p and the downregulation of miRNA-424-5p inhibit MAPK1 and overexpress FGFR1 and NRP2, respectively. In summary, both the adipose depot location and obesity affect the differentiation of resident ASCs through the expression of specific miRNAs.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
- Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
| | | | | | - Carlos Ballesta
- Centro Médico Teknon, Grupo Quiron Salut, 08022 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
4
|
Caetano S, Garcia AR, Figueira I, Brito MA. MEF2C and miR-194-5p: New Players in Triple Negative Breast Cancer Tumorigenesis. Int J Mol Sci 2023; 24:14297. [PMID: 37762600 PMCID: PMC10531597 DOI: 10.3390/ijms241814297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Among breast cancer (BC) subtypes, the most aggressive is triple negative BC (TNBC), which is prone to metastasis. We previously found that microRNA (miR)-194-5p is downregulated at the early stages of TNBC brain metastasis development. Additionally, the transcription factor myocyte enhancer factor 2 (MEF2)C, a bioinformatically predicted miR-194-5p target, was increasingly expressed throughout TNBC brain metastasis formation and disease severity. However, the contributions of these two players to malignant cells' features remain undetermined. This study aimed at disclosing the role of miR-194-5p and MEF2C in TNBC tumorigenesis. The transfection of 4T1 cells with a silencer for MEF2C or with a pre-miRNA for miR-194-5p was employed to study TNBC cells' phenotypic alterations regarding epithelial and mesenchymal markers, as well as migratory capability alterations. MEF2C-silenced cells presented a decline in both vimentin and cytokeratin expression, whereas the overexpression of miR-194-5p promoted an increase in cytokeratin and a reduction in vimentin, reflecting the acquisition of an epithelial phenotype. Both treatments reduced TNBC cells' migration. These results suggest that MEF2C may determine TNBC cells' invasive properties by partially determining the occurrence of epithelial-mesenchymal transition, while the overexpression of miR-194-5p promotes a decline in TNBC cells' aggressive behavior and reinforces this miRNA's role as a tumor suppressor in TNBC.
Collapse
Affiliation(s)
- Sara Caetano
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Research and Development Association, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Gong Z, Shen P, Wang H, Zhu J, Liang K, Wang K, Mi Y, Shen S, Fang X, Liu G. A novel circular RNA circRBMS3 regulates proliferation and metastasis of osteosarcoma by targeting miR-424-eIF4B/YRDC axis. Aging (Albany NY) 2023; 15:1564-1590. [PMID: 36897170 PMCID: PMC10042691 DOI: 10.18632/aging.204567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Circular RNAs (circRNAs) have been demonstrated to have critical regulatory roles in tumorigenesis. However, the contribution of circRNAs to OS (osteosarcoma) remains largely unknown. circRNA deep sequencing was performed to the expression of circRNAs between OS and chondroma tissues. The regulatory and functional role of circRBMS3 (a circRNA derived from exons 7 to 10 of the RBMS3 gene, hsa_circ_0064644) upregulation was examined in OS and was validated in vitro and in vivo, upstream regulator and downstream target of circRBMS3 were both explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridization were used to evaluate the interaction between circRBMS3 and micro (mi)-R-424-5p. For in vivo tumorigenesis experiments, Subcutaneous and Orthotopic xenograft OS mouse models were built. Expression of circRBMS3 was higher in OS tissues due to the regulation of adenosine deaminase 1-acting on RNA (ADAR1), an abundant RNA editing enzyme. Our in vitro data indicated that ShcircRBMS3 inhibits the proliferation and migration of osteosarcoma cells. Mechanistically, we showed that circRBMS3 could regulate eIF4B and YRDC, through 'sponging' miR-424-5p. Furthermore, knockdown of circRBMS3 inhibited malignant phenotypes and bone destruction of OS in vivo. Our results reveal an important role for a novel circRBMS3 in the growth and metastasis of malignant tumor cells and offer a fresh perspective on circRNAs in OS progression.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Kefan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yunfeng Mi
- Department of Orthopaedic Surgery, Ningbo First Hospital, Ningbo 315010, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
6
|
Wang S, Jiang B, Xie D, Li X, Wu G. Regulatory roles of ferroptosis-related non-coding RNAs and their research progress in urological malignancies. Front Genet 2023; 14:1133020. [PMID: 36936418 PMCID: PMC10017998 DOI: 10.3389/fgene.2023.1133020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Ferroptosis is a new type of cell death characterized by damage to the intracellular microenvironment, which causes the accumulation of lipid hydroperoxide and reactive oxygen species to cause cytotoxicity and regulated cell death. Non-coding RNAs (ncRNAs) play an important role in gene expression at the epigenetic, transcriptional, and post-transcriptional levels through interactions with different DNAs, RNAs, or proteins. Increasing evidence has shown that ferroptosis-related ncRNAs are closely related to the occurrence and progression of several diseases, including urological malignancies. Recently, the role of ferroptosis-associated ncRNAs (long non-coding RNAs, micro RNAs, and circular RNAs) in the occurrence, drug resistance, and prognosis of urological malignancies has attracted widespread attention. However, this has not yet been addressed systematically. In this review, we discuss this issue as much as possible to expand the knowledge and understanding of urological malignancies to provide new ideas for exploring the diagnosis and treatment of urological malignancies in the future. Furthermore, we propose some challenges in the clinical application of ferroptosis-associated ncRNAs.
Collapse
Affiliation(s)
| | | | | | - Xiunan Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Xu F, Jiang M, Tang Q, Lin J, Liu X, Zhang C, Zhao J, He Y, Dong L, Zhu L, Lin T. MiR-29a-3p inhibits high-grade transformation and epithelial-mesenchymal transition of lacrimal gland adenoid cystic carcinoma by targeting Quaking. Mol Biol Rep 2023; 50:2305-2316. [PMID: 36575320 DOI: 10.1007/s11033-022-08150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Lacrimal adenoid cystic carcinoma (LACC) is the most common orbital malignant epithelial neoplasm. LACC with high-grade transformation (LACC-HGT) has higher rates of recurrence, metastasis, and mortality than LACC without HGT. This study investigated the effects of microRNA-29a-3p (miR-29a-3p) in the pathogenesis of LACC-HGT. METHODS An Agilent human miRNA microarray was used to screen the differentially expressed miRNAs (DEMs) in LACC and LACC-HGT tumor tissues. Then, the primary cells obtained in previous studies were used to determine the effect of miR-29a-3p. RESULTS The expression of miR-29a-3p was abnormally lower in LACC-HGT than in LACC. miR-29a-3p can specifically target the 3' UTR of Quaking mRNA and down-regulate Quaking expression, thereby inhibiting the proliferation, migration, and epithelial-mesenchymal transition of LACC cells. CONCLUSIONS This study illustrated that miR-29a-3p functions as a tumor suppressor by down-regulating the expression of Quaking to inhibit the tumorigenesis of LACC cells. This study may also reveal the pathogenesis of HGT in LACC cells and provide a reference for LACC-HGT targeted diagnosis.
Collapse
Affiliation(s)
- Fei Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Meixia Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology &Visual Sciences, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Qin Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Jiaqi Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Chuanli Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Jinzhi Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Yanjin He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| | - Limin Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| | - Tingting Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
8
|
Ivanova E, Gilyazova I, Pavlov V, Izmailov A, Gimalova G, Karunas A, Prokopenko I, Khusnutdinova E. MicroRNA Processing Pathway-Based Polygenic Score for Clear Cell Renal Cell Carcinoma in the Volga-Ural Region Populations of Eurasian Continent. Genes (Basel) 2022; 13:genes13071281. [PMID: 35886064 PMCID: PMC9324265 DOI: 10.3390/genes13071281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
The polygenic scores (PGSs) are developed to help clinicians in distinguishing individuals at high risk of developing disease outcomes from the general population. Clear cell renal cell carcinoma (ccRCC) is a complex disorder that involves numerous biological pathways, one of the most important of which is responsible for the microRNA biogenesis machinery. Here, we defined the biological-pathway-specific PGS in a case-control study of ccRCC in the Volga-Ural region of the Eurasia continent. We evaluated 28 DNA SNP variants, located in microRNA biogenesis genes, in 464 individuals with clinically diagnosed ccRCC and 1042 individuals without the disease. Individual genetic risks were defined using the SNP-variant effects derived from the ccRCC association analysis. The final weighted and unweighted PGS models were based on 21 SNPs, and 7 SNPs were excluded due to high LD. In our dataset, microRNA-machinery-weighted PGS revealed 1.69-fold higher odds (95% CI [1.51–1.91]) for ccRCC risk in individuals with ccRCC compared with controls with a p-value of 2.0 × 10−16. The microRNA biogenesis pathway weighted PGS predicted the risk of ccRCC with an area under the curve (AUC) = 0.642 (95%nCI [0.61–0.67]). Our findings indicate that DNA variants of microRNA machinery genes modulate the risk of ccRCC in Volga-Ural populations. Moreover, larger powerful genome-wide association studies are needed to reveal a wider range of genetic variants affecting microRNA processing. Biological-pathway-based PGSs will advance the development of innovative screening systems for future stratified medicine approaches in ccRCC.
Collapse
Affiliation(s)
- Elizaveta Ivanova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| | - Irina Gilyazova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
- Correspondence:
| | - Valentin Pavlov
- Bashkir State Medical University, 450008 Ufa, Russia; (V.P.); (A.I.)
| | - Adel Izmailov
- Bashkir State Medical University, 450008 Ufa, Russia; (V.P.); (A.I.)
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK;
- UMR 8199—EGID, Institut Pasteur de Lille, CNRS, University of Lille, F-59000 Lille, France
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| |
Collapse
|
9
|
MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol 2022; 2022:4213401. [PMID: 35646516 PMCID: PMC9135554 DOI: 10.1155/2022/4213401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Objective. Clear cell renal cell carcinoma (ccRCC) is the major histopathological subtype of renal cancer, and ferroptosis is implicated in the pathogenesis of ccRCC. The present study was aimed at investigating the role and underlying mechanisms of microRNA-4735-3p (miR-4735-3p) in ccRCC. Methods. Human ccRCC cell lines were transfected with the miR-4735-3p mimic or inhibitor to manipulate the expression of miR-4735-3p. Cell proliferation, colony formation, cell migration, cell invasion, cell death, oxidative stress, lipid peroxidation, and iron metabolism were determined. To validate the necessity of solute carrier family 40 member 1 (SLC40A1), human ccRCC cell lines were overexpressed with SLC40A1 using adenoviral vectors. Results. miR-4735-3p expression was reduced in human ccRCC tissues and cell lines but elevated upon ferroptotic stimulation. The miR-4735-3p mimic increased, while the miR-4735-3p inhibitor decreased oxidative stress, lipid peroxidation, iron overload, and ferroptosis of human ccRCC cell lines. Mechanistic studies identified SLC40A1 as a direct target of miR-4735-3p, and SLC40A1 overexpression significantly attenuated iron overload and ferroptosis in the miR-4735-3p mimic-treated human ccRCC cell lines. Conclusion. miR-4735-3p facilitates ferroptosis and tumor suppression in ccRCC by targeting SLC40A1.
Collapse
|
10
|
A Novel Machine Learning 13-Gene Signature: Improving Risk Analysis and Survival Prediction for Clear Cell Renal Cell Carcinoma Patients. Cancers (Basel) 2022; 14:cancers14092111. [PMID: 35565241 PMCID: PMC9103317 DOI: 10.3390/cancers14092111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Clear cell renal cell carcinoma is a type of kidney cancer which comprises the majority of all renal cell carcinomas. Many efforts have been made to identify biomarkers which could help healthcare professionals better treat this kind of cancer. With extensive public data available, we conducted a machine learning study to determine a gene signature that could indicate patient survival with high accuracy. Through the min-Redundancy and Max-Relevance algorithm we generated a signature of 13 genes highly correlated with patient outcomes. These findings reveal potential strategies for personalized medicine in the clinical practice. Abstract Patients with clear cell renal cell carcinoma (ccRCC) have poor survival outcomes, especially if it has metastasized. It is of paramount importance to identify biomarkers in genomic data that could help predict the aggressiveness of ccRCC and its resistance to drugs. Thus, we conducted a study with the aims of evaluating gene signatures and proposing a novel one with higher predictive power and generalization in comparison to the former signatures. Using ccRCC cohorts of the Cancer Genome Atlas (TCGA-KIRC) and International Cancer Genome Consortium (ICGC-RECA), we evaluated linear survival models of Cox regression with 14 signatures and six methods of feature selection, and performed functional analysis and differential gene expression approaches. In this study, we established a 13-gene signature (AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4, LIMCH1, LINC01732, OTX1, SAA1, SEMA3G, ZIC2) whose expression levels are able to predict distinct outcomes of patients with ccRCC. Moreover, we performed a comparison between our signature and others from the literature. The best-performing gene signature was achieved using the ensemble method Min-Redundancy and Max-Relevance (mRMR). This signature comprises unique features in comparison to the others, such as generalization through different cohorts and being functionally enriched in significant pathways: Urothelial Carcinoma, Chronic Kidney disease, and Transitional cell carcinoma, Nephrolithiasis. From the 13 genes in our signature, eight are known to be correlated with ccRCC patient survival and four are immune-related. Our model showed a performance of 0.82 using the Receiver Operator Characteristic (ROC) Area Under Curve (AUC) metric and it generalized well between the cohorts. Our findings revealed two clusters of genes with high expression (SAA1, OTX1, ZIC2, LINC01732, GNB3 and IL4) and low expression (AL353637.1, AR, HHLA2, LIMCH1, SEMA3G, DPP6, and FOXJ1) which are both correlated with poor prognosis. This signature can potentially be used in clinical practice to support patient treatment care and follow-up.
Collapse
|