1
|
Shi Y, Fan H, Li L, Hou Y, Qian F, Zhuang M, Miao B, Fei S. The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:40. [PMID: 38297303 PMCID: PMC10832162 DOI: 10.1186/s12957-024-03321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The application of machine learning (ML) for identifying early gastric cancer (EGC) has drawn increasing attention. However, there lacks evidence-based support for its specific diagnostic performance. Hence, this systematic review and meta-analysis was implemented to assess the performance of image-based ML in EGC diagnosis. METHODS We performed a comprehensive electronic search in PubMed, Embase, Cochrane Library, and Web of Science up to September 25, 2022. QUADAS-2 was selected to judge the risk of bias of included articles. We did the meta-analysis using a bivariant mixed-effect model. Sensitivity analysis and heterogeneity test were performed. RESULTS Twenty-one articles were enrolled. The sensitivity (SEN), specificity (SPE), and SROC of ML-based models were 0.91 (95% CI: 0.87-0.94), 0.85 (95% CI: 0.81-0.89), and 0.94 (95% CI: 0.39-1.00) in the training set and 0.90 (95% CI: 0.86-0.93), 0.90 (95% CI: 0.86-0.92), and 0.96 (95% CI: 0.19-1.00) in the validation set. The SEN, SPE, and SROC of EGC diagnosis by non-specialist clinicians were 0.64 (95% CI: 0.56-0.71), 0.84 (95% CI: 0.77-0.89), and 0.80 (95% CI: 0.29-0.97), and those by specialist clinicians were 0.80 (95% CI: 0.74-0.85), 0.88 (95% CI: 0.85-0.91), and 0.91 (95% CI: 0.37-0.99). With the assistance of ML models, the SEN of non-specialist physicians in the diagnosis of EGC was significantly improved (0.76 vs 0.64). CONCLUSION ML-based diagnostic models have greater performance in the identification of EGC. The diagnostic accuracy of non-specialist clinicians can be improved to the level of the specialists with the assistance of ML models. The results suggest that ML models can better assist less experienced clinicians in diagnosing EGC under endoscopy and have broad clinical application value.
Collapse
Affiliation(s)
- Yiheng Shi
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Haohan Fan
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- Key Laboratory of Gastrointestinal Endoscopy, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Yaqi Hou
- College of Nursing, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Qian
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Mengting Zhuang
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Bei Miao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China.
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China.
- Key Laboratory of Gastrointestinal Endoscopy, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China.
| |
Collapse
|
2
|
Klang E, Sourosh A, Nadkarni GN, Sharif K, Lahat A. Deep Learning and Gastric Cancer: Systematic Review of AI-Assisted Endoscopy. Diagnostics (Basel) 2023; 13:3613. [PMID: 38132197 PMCID: PMC10742887 DOI: 10.3390/diagnostics13243613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gastric cancer (GC), a significant health burden worldwide, is typically diagnosed in the advanced stages due to its non-specific symptoms and complex morphological features. Deep learning (DL) has shown potential for improving and standardizing early GC detection. This systematic review aims to evaluate the current status of DL in pre-malignant, early-stage, and gastric neoplasia analysis. METHODS A comprehensive literature search was conducted in PubMed/MEDLINE for original studies implementing DL algorithms for gastric neoplasia detection using endoscopic images. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The focus was on studies providing quantitative diagnostic performance measures and those comparing AI performance with human endoscopists. RESULTS Our review encompasses 42 studies that utilize a variety of DL techniques. The findings demonstrate the utility of DL in GC classification, detection, tumor invasion depth assessment, cancer margin delineation, lesion segmentation, and detection of early-stage and pre-malignant lesions. Notably, DL models frequently matched or outperformed human endoscopists in diagnostic accuracy. However, heterogeneity in DL algorithms, imaging techniques, and study designs precluded a definitive conclusion about the best algorithmic approach. CONCLUSIONS The promise of artificial intelligence in improving and standardizing gastric neoplasia detection, diagnosis, and segmentation is significant. This review is limited by predominantly single-center studies and undisclosed datasets used in AI training, impacting generalizability and demographic representation. Further, retrospective algorithm training may not reflect actual clinical performance, and a lack of model details hinders replication efforts. More research is needed to substantiate these findings, including larger-scale multi-center studies, prospective clinical trials, and comprehensive technical reporting of DL algorithms and datasets, particularly regarding the heterogeneity in DL algorithms and study designs.
Collapse
Affiliation(s)
- Eyal Klang
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (A.S.); (G.N.N.)
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- ARC Innovation Center, Sheba Medical Center, Affiliated with Tel Aviv University Medical School, Tel Hashomer, Ramat Gan 52621, Tel Aviv, Israel
| | - Ali Sourosh
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (A.S.); (G.N.N.)
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Girish N. Nadkarni
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (A.S.); (G.N.N.)
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kassem Sharif
- Department of Gastroenterology, Sheba Medical Center, Affiliated with Tel Aviv University Medical School, Tel Hashomer, Ramat Gan 52621, Tel Aviv, Israel;
| | - Adi Lahat
- Department of Gastroenterology, Sheba Medical Center, Affiliated with Tel Aviv University Medical School, Tel Hashomer, Ramat Gan 52621, Tel Aviv, Israel;
| |
Collapse
|
3
|
Shen Y, Chen A, Zhang X, Zhong X, Ma A, Wang J, Wang X, Zheng W, Sun Y, Yue L, Zhang Z, Zhang X, Lin N, Kim JJ, Du Q, Liu J, Hu W. Real-Time Evaluation of Helicobacter pylori Infection by Convolution Neural Network During White-Light Endoscopy: A Prospective, Multicenter Study (With Video). Clin Transl Gastroenterol 2023; 14:e00643. [PMID: 37800683 PMCID: PMC10589579 DOI: 10.14309/ctg.0000000000000643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Convolutional neural network during endoscopy may facilitate evaluation of Helicobacter pylori infection without obtaining gastric biopsies. The aim of the study was to evaluate the diagnosis accuracy of a computer-aided decision support system for H. pylori infection (CADSS-HP) based on convolutional neural network under white-light endoscopy. METHODS Archived video recordings of upper endoscopy with white-light examinations performed at Sir Run Run Shaw Hospital (January 2019-September 2020) were used to develop CADSS-HP. Patients receiving endoscopy were prospectively enrolled (August 2021-August 2022) from 3 centers to calculate the diagnostic property. Accuracy of CADSS-HP for H. pylori infection was also compared with endoscopic impression, urea breath test (URT), and histopathology. H. pylori infection was defined by positive test on histopathology and/or URT. RESULTS Video recordings of 599 patients who received endoscopy were used to develop CADSS-HP. Subsequently, 456 patients participated in the prospective evaluation including 189 (41.4%) with H. pylori infection. With a threshold of 0.5, CADSS-HP achieved an area under the curve of 0.95 (95% confidence interval [CI], 0.93-0.97) with sensitivity and specificity of 91.5% (95% CI 86.4%-94.9%) and 88.8% (95% CI 84.2%-92.2%), respectively. CADSS-HP demonstrated higher sensitivity (91.5% vs 78.3%; mean difference = 13.2%, 95% CI 5.7%-20.7%) and accuracy (89.9% vs 83.8%, mean difference = 6.1%, 95% CI 1.6%-10.7%) compared with endoscopic diagnosis by endoscopists. Sensitivity of CADSS-HP in diagnosing H. pylori was comparable with URT (91.5% vs 95.2%; mean difference = 3.7%, 95% CI -1.8% to 9.4%), better than histopathology (91.5% vs 82.0%; mean difference = 9.5%, 95% CI 2.3%-16.8%). DISCUSSION CADSS-HP achieved high sensitivity in the diagnosis of H. pylori infection in the real-time test, outperforming endoscopic diagnosis by endoscopists and comparable with URT. Clinicaltrials.gov ; ChiCTR2000030724.
Collapse
Affiliation(s)
- Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
- West China Xiamen Hospital, Sichuan University, Xiamen, China
| | - Angli Chen
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China
| | - Xinsen Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou, China
| | - Ahuo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, China
| | - Jianping Wang
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou, China
| | - Xinjie Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Wenfang Zheng
- Department of Gastroenterology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yingchao Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, Longyou County People's Hospital, Quzhou, China
| | - Xiaoyan Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ne Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - John J. Kim
- Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California, USA
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Jiquan Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Wang F, Yi J, Chen Y, Bai X, Lu C, Feng S, Zhou X. PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer. Acta Histochem 2023; 125:152071. [PMID: 37331089 DOI: 10.1016/j.acthis.2023.152071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Serine protease 2 (PRSS2) is upregulated in gastric cancer tissues, correlates with poor prognosis and promotes migration and invasion of gastric cancer cells. However, the exact mechanism by which PRSS2 promotes metastasis in gastric cancer is unclear. We examined serum PRSS2 levels in healthy controls and gastric cancer patients by enzyme linked immunosorbent assay (ELISA) and analyzed the correlation between PRSS2 serum level with the clinicopathological characteristics of gastric cancer patients and matrix metalloproteinase-9 (MMP-9) expression. A lentiviral MMP-9 overexpression vector was constructed and used to transfect gastric cancer cells with stable silencing of PRSS2, and migration, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer cells were examined. High serum PRSS2 levels were detected in gastric cancer patients and associated with lymphatic metastasis and TNM stage. Serum PRSS2 was positively correlated with serum MMP-9 level. PRSS2 silencing inhibited EMT, and knock-down of PRSS2 partially abrogated cell metastasis and EMT caused by overexpression of MMP-9. These results suggest that PRSS2 promotes the migration and invasion of gastric cancer cells through EMT induction by MMP-9. Our findings suggest that PRSS2 may be a potential early diagnostic marker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiang Bai
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunfeng Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
5
|
Wu CC, Su CH, Islam MM, Liao MH. Artificial Intelligence in Dementia: A Bibliometric Study. Diagnostics (Basel) 2023; 13:2109. [PMID: 37371004 PMCID: PMC10297057 DOI: 10.3390/diagnostics13122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The applications of artificial intelligence (AI) in dementia research have garnered significant attention, prompting the planning of various research endeavors in current and future studies. The objective of this study is to provide a comprehensive overview of the research landscape regarding AI and dementia within scholarly publications and to suggest further studies for this emerging research field. A search was conducted in the Web of Science database to collect all relevant and highly cited articles on AI-related dementia research published in English until 16 May 2023. Utilizing bibliometric indicators, a search strategy was developed to assess the eligibility of titles, utilizing abstracts and full texts as necessary. The Bibliometrix tool, a statistical package in R, was used to produce and visualize networks depicting the co-occurrence of authors, research institutions, countries, citations, and keywords. We obtained a total of 1094 relevant articles published between 1997 and 2023. The number of annual publications demonstrated an increasing trend over the past 27 years. Journal of Alzheimer's Disease (39/1094, 3.56%), Frontiers in Aging Neuroscience (38/1094, 3.47%), and Scientific Reports (26/1094, 2.37%) were the most common journals for this domain. The United States (283/1094, 25.86%), China (222/1094, 20.29%), India (150/1094, 13.71%), and England (96/1094, 8.77%) were the most productive countries of origin. In terms of institutions, Boston University, Columbia University, and the University of Granada demonstrated the highest productivity. As for author contributions, Gorriz JM, Ramirez J, and Salas-Gonzalez D were the most active researchers. While the initial period saw a relatively low number of articles focusing on AI applications for dementia, there has been a noticeable upsurge in research within this domain in recent years (2018-2023). The present analysis sheds light on the key contributors in terms of researchers, institutions, countries, and trending topics that have propelled the advancement of AI in dementia research. These findings collectively underscore that the integration of AI with conventional treatment approaches enhances the effectiveness of dementia diagnosis, prediction, classification, and monitoring of treatment progress.
Collapse
Affiliation(s)
- Chieh-Chen Wu
- Department of Healthcare Information and Management, School of Health Technology, Ming Chuan University, Taipei 333, Taiwan;
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111369, Taiwan;
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111369, Taiwan;
- Graduate Institute of Sports Coaching Science, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| | | | - Mao-Hung Liao
- Superintendent Office, Yonghe Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- Department of Healthcare Administration, Asia Eastern University of Science and Technology, Banciao District, New Taipei City 220303, Taiwan
| |
Collapse
|
6
|
Su CH, Islam MM, Jia G, Wu CC. Statins and the Risk of Gastric Cancer: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11237180. [PMID: 36498753 PMCID: PMC9739712 DOI: 10.3390/jcm11237180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Previous epidemiological studies have reported that the use of statins is associated with a decreased risk of gastric cancer, although the beneficial effects of statins on the reduction of gastric cancer remain unclear. Therefore, we conducted a systematic review and meta-analysis to investigate the association between the use of statins and the risk of gastric cancer. Electronic databases such as PubMed, EMBASE, Scopus, and Web of Science were searched between 1 January 2000 and 31 August 2022. Two authors used predefined selection criteria to independently screen all titles, abstracts, and potential full texts. Observational studies (cohort and case-control) or randomized control trials that assessed the association between statins and gastric cancer were included in the primary and secondary analyses. The pooled effect sizes were calculated using the random-effects model. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guidelines were followed to conduct this study. The total sample size across the 20 included studies was 11,870,553. The use of statins was associated with a reduced risk of gastric cancer (RRadjusted: 0.72; 95%CI: 0.64−0.81, p < 0.001). However, the effect size of statin use on the risk of gastric cancer was lower in Asian studies compared to Western studies (RRAsian: 0.62; 95%CI: 0.53−0.73 vs. RRwestern: 0.88; 95%CI: 0.79−0.99). These findings suggest that the use of statins is associated with a reduced risk of gastric cancer. This reverse association was even stronger among Asian people than Western individuals.
Collapse
Affiliation(s)
- Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
- Graduate Institute of Sports Coaching Science, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
| | - Md. Mohaimenul Islam
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 111396, Taiwan
| | - Guhua Jia
- Sports Teaching Department, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chieh-Chen Wu
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
- Correspondence:
| |
Collapse
|
7
|
BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images. Bioengineering (Basel) 2022; 9:bioengineering9060261. [PMID: 35735504 PMCID: PMC9220285 DOI: 10.3390/bioengineering9060261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is one of the most common types of cancer and is the leading cause of cancer-related death. Diagnosis of breast cancer is based on the evaluation of pathology slides. In the era of digital pathology, these slides can be converted into digital whole slide images (WSIs) for further analysis. However, due to their sheer size, digital WSIs diagnoses are time consuming and challenging. In this study, we present a lightweight architecture that consists of a bilinear structure and MobileNet-V3 network, bilinear MobileNet-V3 (BM-Net), to analyze breast cancer WSIs. We utilized the WSI dataset from the ICIAR2018 Grand Challenge on Breast Cancer Histology Images (BACH) competition, which contains four classes: normal, benign, in situ carcinoma, and invasive carcinoma. We adopted data augmentation techniques to increase diversity and utilized focal loss to remove class imbalance. We achieved high performance, with 0.88 accuracy in patch classification and an average 0.71 score, which surpassed state-of-the-art models. Our BM-Net shows great potential in detecting cancer in WSIs and is a promising clinical tool.
Collapse
|