1
|
Zhou P, Hu M, Li Q, Yang G. Both intrinsic and microenvironmental factors contribute to the regulation of stem cell quiescence. J Cell Physiol 2024; 239:e31325. [PMID: 38860372 DOI: 10.1002/jcp.31325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Precise regulation of stem cell quiescence is essential for tissue development and homeostasis. Therefore, its aberrant regulation is intimately correlated with various human diseases. However, the detailed mechanisms of stem cell quiescence and its specific role in the pathogenesis of various diseases remain to be determined. Recent studies have revealed that the intrinsic and microenvironmental factors are the potential candidates responsible for the orderly switch between the dormant and activated states of stem cells. In addition, defects in signaling pathways related to internal and external factors of stem cells might contribute to the initiation and development of diseases by altering the dormancy of stem cells. In this review, we focus on the mechanisms underlying stem cell quiescence, especially the involvement of intrinsic and microenvironmental factors. In addition, we discuss the relationship between the anomalies of stem cell quiescence and related diseases, hopefully providing therapeutic insights for developing novel treatments.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Mingzheng Hu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Ivanova ON, Gavlina AV, Karpenko IL, Zenov MA, Antseva SS, Zakirova NF, Valuev-Elliston VT, Krasnov GS, Fedyakina IT, Vorobyev PO, Bartosch B, Kochetkov SN, Lipatova AV, Yanvarev DV, Ivanov AV. Polyamine Catabolism Revisited: Acetylpolyamine Oxidase Plays a Minor Role due to Low Expression. Cells 2024; 13:1134. [PMID: 38994986 PMCID: PMC11240330 DOI: 10.3390/cells13131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.
Collapse
Affiliation(s)
- Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Gavlina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Martin A Zenov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S Antseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina T Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 132098 Moscow, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Nazarenko AS, Biryukova YK, Orlova EO, Trachuk KN, Ivanova AL, Belyakova AV, Pestov NB, Vorovitch MF, Ishmukhametov AA, Kolyasnikova NM. [Investigation of oncolytic potential of vaccine strains of yellow fever and tick-borne encephalitis viruses against glioblastoma and pancreatic carcinoma cell lines]. Vopr Virusol 2023; 68:536-548. [PMID: 38156569 DOI: 10.36233/0507-4088-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Flaviviruses, possessing natural neurotropicity could be used in glioblastoma therapy using attenuated strains or as a delivery system for antitumor agents in an inactivated form. OBJECTIVE To investigate the sensitivity of glioblastoma and pancreatic carcinoma cell lines to vaccine strains of yellow fever and tick-borne encephalitis viruses. MATERIALS AND METHODS Cell lines: glioblastoma GL-6, T98G, LN-229, pancreatic carcinoma MIA RaCa-2 and human pancreatic ductal carcinoma PANC-1. Viral strains: 17D yellow fever virus (YF), Sofjin tick-borne encephalitis virus (TBEV). Virus concentration were determined by plaque assay and quantitative PCR. Determination of cell sensitivity to viruses by MTT assay. RESULTS 17D YF was effective only against pancreatic carcinoma tumor cells MIA Paca-2 and had a limited effect against PANC-1. In glioblastoma cell lines (LN229, GL6, T98G), virus had no oncolytic effect and the viral RNA concentration fell in the culture medium. Sofjin TBEV showed CPE50 against MIA Paca-2 and a very limited cytotoxic effect against PANC-1. However, it had no oncolytic effect against glioblastoma cell lines (LN229, T98G and GL6), although virus reproduction continued in these cultures. For the GL6 glioblastoma cell line, the viral RNA concentration at the level with the infection dose was determined within 13 days, despite medium replacement, while in the case of the LN229 cell line, the virus concentration increased from 1 × 109 to 1 × 1010 copies/ml. CONCLUSION Tumor behavior in organism is more complex and is determined by different microenvironmental factors and immune status. In the future, it is advisable to continue studying the antitumor oncolytic and immunomodulatory effects of viral strains 17D YF and Sofjin TBEV using in vivo models.
Collapse
Affiliation(s)
- A S Nazarenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - Y K Biryukova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - E O Orlova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - K N Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - A L Ivanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - A V Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - N B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - M F Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Institute of Translational Medicine and Biotechnology
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Institute of Translational Medicine and Biotechnology
| | - N M Kolyasnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| |
Collapse
|
4
|
Menotti L, Vannini A. Oncolytic Viruses in the Era of Omics, Computational Technologies, and Modeling: Thesis, Antithesis, and Synthesis. Int J Mol Sci 2023; 24:17378. [PMID: 38139207 PMCID: PMC10743452 DOI: 10.3390/ijms242417378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Oncolytic viruses (OVs) are the frontier therapy for refractory cancers, especially in integration with immunomodulation strategies. In cancer immunovirotherapy, the many available "omics" and systems biology technologies generate at a fast pace a challenging huge amount of data, where apparently clashing information mirrors the complexity of individual clinical situations and OV used. In this review, we present and discuss how currently big data analysis, on one hand and, on the other, simulation, modeling, and computational technologies, provide invaluable support to interpret and integrate "omic" information and drive novel synthetic biology and personalized OV engineering approaches for effective immunovirotherapy. Altogether, these tools, possibly aided in the future by artificial intelligence as well, will allow for the blending of the information into OV recombinants able to achieve tumor clearance in a patient-tailored way. Various endeavors to the envisioned "synthesis" of turning OVs into personalized theranostic agents are presented.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | |
Collapse
|
5
|
Knizhnik E, Chumakov S, Svetlova J, Pavlova I, Khodarovich Y, Brylev V, Severov V, Alieva R, Kozlovskaya L, Andreev D, Aralov A, Varizhuk A. Unwinding the SARS-CoV-2 Ribosomal Frameshifting Pseudoknot with LNA and G-Clamp-Modified Phosphorothioate Oligonucleotides Inhibits Viral Replication. Biomolecules 2023; 13:1660. [PMID: 38002341 PMCID: PMC10668963 DOI: 10.3390/biom13111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.
Collapse
Affiliation(s)
- Ekaterina Knizhnik
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Stepan Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
| | - Iulia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yuri Khodarovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
- Research and Educational Resource Center for Cellular Technologies of The Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Vladimir Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
| | - Rugiya Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Raman Spectroscopy Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Liubov Kozlovskaya
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Dmitry Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey Aralov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
6
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Postoenko VI, Garibova LA, Levitsky LI, Bubis JA, Gorshkov MV, Ivanov MV. IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics. J Proteome Res 2023; 22:2827-2835. [PMID: 37579078 DOI: 10.1021/acs.jproteome.3c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.
Collapse
Affiliation(s)
- Valeriy I Postoenko
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, National Research University, G. Dolgoprudny, Institutsky Lane 9, Dolgoprudny 141701, Russia
| | - Leyla A Garibova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, National Research University, G. Dolgoprudny, Institutsky Lane 9, Dolgoprudny 141701, Russia
| | - Lev I Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
8
|
Kazakova EM, Solovyeva EM, Levitsky LI, Bubis JA, Emekeeva DD, Antonets AA, Nazarov AA, Gorshkov MV, Tarasova IA. Proteomics-based scoring of cellular response to stimuli for improved characterization of signaling pathway activity. Proteomics 2023; 23:e2200275. [PMID: 36478387 DOI: 10.1002/pmic.202200275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Omics technologies focus on uncovering the complex nature of molecular mechanisms in cells and organisms, including biomarkers and drug targets discovery. Aiming at these tasks, we see that information extracted from omics data is still underused. In particular, characteristics of differentially regulated molecules can be combined in a single score to quantify the signaling pathway activity. Such a metric can be useful for comprehensive data interpretation to follow: (1) developing molecular responses in time; (2) potency of a drug on a certain cell culture; (3) ranking the signaling pathway activity in stimulated cells; and (4) integration of the omics data and assay-based measurements of cell viability, cytotoxicity, and proliferation. With recent advances in ultrafast mass spectrometry for quantitative proteomics allowing data collection in a few minutes, proteomics score for cellular response to stimuli can become a fast, accurate, and informative complement to bioassays. Here, we utilized an interquartile-based selection of differentially regulated features and a variety of schemes for quantifying cellular responses to come up with the quantitative metric for total cellular response and pathway activity. Validation was performed using antiproliferative and virus assays and label-free proteomics data collected for cancer cells subjected to drug stimulation.
Collapse
Affiliation(s)
- Elizaveta M Kazakova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta M Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Lev I Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Julia A Bubis
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Daria D Emekeeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Antonets
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey A Nazarov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Irina A Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023; 9:122-139. [PMID: 36402738 PMCID: PMC9877109 DOI: 10.1016/j.trecan.2022.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Oncolytic viruses (OVs) provide novel and promising therapeutic options for patients with cancers resistant to traditional therapies. Natural or genetically modified OVs are multifaceted tumor killers. They directly lyse tumor cells while sparing normal cells, and indirectly potentiate antitumor immunity by releasing antigens and activating inflammatory responses in the tumor microenvironment. However, some limitations, such as limited penetration of OVs into tumors, short persistence, and the host antiviral immune response, are impeding the broad translation of oncolytic virotherapy into the clinic. If these challenges can be overcome, combination therapies, such as OVs plus immune checkpoint blockade (ICB), chimeric antigen receptor (CAR) T cells, or CAR natural killer (NK) cells, may provide powerful therapeutic platforms in the clinic.
Collapse
Affiliation(s)
- Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA.
| |
Collapse
|
10
|
SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers (Basel) 2023; 15:cancers15030632. [PMID: 36765590 PMCID: PMC9913867 DOI: 10.3390/cancers15030632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and rapidly caused a pandemic that led to the death of >6 million people due to hypercoagulation and cytokine storm. In addition, SARS-CoV-2 triggers a wide array of pathologies, including liver dysfunction and neurological disorders. It remains unclear if these events are due to direct infection of the respective tissues or result from systemic inflammation. Here, we explored the possible infection of hepatic and CNS cell lines by SARS-CoV-2. We show that even moderate expression levels of the angiotensin-converting enzyme 2 (ACE2) are sufficient for productive infection. SARS-CoV-2 infects hepatoma Huh7.5 and HepG2 cells but not non-transformed liver progenitor or hepatocyte/cholangiocyte-like HepaRG cells. However, exposure to the virus causes partial dedifferentiation of HepaRG cells. SARS-CoV-2 can also establish efficient replication in some low-passage, high-grade glioblastoma cell lines. In contrast, embryonal primary astrocytes or neuroblastoma cells did not support replication of the virus. Glioblastoma cell permissiveness is associated with defects in interferon production. Overall, these results suggest that liver dysfunction during COVID-19 is not due to infection of these tissues by SARS-CoV-2. Furthermore, tumors may potentially serve as reservoirs for the virus during infection.
Collapse
|
11
|
Kolyasnikova NM, Pestov NB, Sanchez-Pimentel JP, Barlev NA, Ishmukhametov AA. Anti-cancer Virotherapy in Russia: Lessons from the Past, Current Challenges and Prospects for the Future. Curr Pharm Biotechnol 2023; 24:266-278. [PMID: 35578840 DOI: 10.2174/1389201023666220516121813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
The idea of using the lytic power of viruses against malignant cells has been entertained for many decades. However, oncolytic viruses gained broad attention as an emerging anti-cancer therapy only recently with the successful implementation of several oncolytic viruses to treat advanced melanoma. Here we review the history of oncolytic viruses in the Russian Federation and recent biotechnological advances in connection with the perspectives of their practical use against aggressive tumors such as glioblastoma or pancreatic cancer. A particular emphasis is made on novel applications of safe non-lytic virus-derived vectors armed with prodrug-converting enzyme transgenes. Rational improvement of oncotropism by conjugation with biopolymers and nanoformulations is also discussed.
Collapse
Affiliation(s)
- Nadezhda M Kolyasnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia.,Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Laboratory of Molecular Oncology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Jeanne P Sanchez-Pimentel
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| | - Nikolay A Barlev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia.,Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Laboratory of Molecular Oncology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow, 119435, Russia
| | - Aidar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| |
Collapse
|
12
|
Vorobyev PO, Kochetkov DV, Chumakov PM, Zakirova NF, Zotova-Nefedorova SI, Vasilenko KV, Alekseeva ON, Kochetkov SN, Bartosch B, Lipatova AV, Ivanov AV. 2-Deoxyglucose, an Inhibitor of Glycolysis, Enhances the Oncolytic Effect of Coxsackievirus. Cancers (Basel) 2022; 14:5611. [PMID: 36428704 PMCID: PMC9688421 DOI: 10.3390/cancers14225611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.
Collapse
Affiliation(s)
- Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia I. Zotova-Nefedorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Konstantin V. Vasilenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of General Medicine, Pirogov Russian National Medical University, 117997 Moscow, Russia
| | - Olga N. Alekseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69003 Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), 69001 Lyon, France
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
13
|
Elsherbini AM, Alsamman AM, Elsherbiny NM, El-Sherbiny M, Ahmed R, Ebrahim HA, Bakkach J. Decoding Diabetes Biomarkers and Related Molecular Mechanisms by Using Machine Learning, Text Mining, and Gene Expression Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13890. [PMID: 36360783 PMCID: PMC9656783 DOI: 10.3390/ijerph192113890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 05/13/2023]
Abstract
The molecular basis of diabetes mellitus is yet to be fully elucidated. We aimed to identify the most frequently reported and differential expressed genes (DEGs) in diabetes by using bioinformatics approaches. Text mining was used to screen 40,225 article abstracts from diabetes literature. These studies highlighted 5939 diabetes-related genes spread across 22 human chromosomes, with 112 genes mentioned in more than 50 studies. Among these genes, HNF4A, PPARA, VEGFA, TCF7L2, HLA-DRB1, PPARG, NOS3, KCNJ11, PRKAA2, and HNF1A were mentioned in more than 200 articles. These genes are correlated with the regulation of glycogen and polysaccharide, adipogenesis, AGE/RAGE, and macrophage differentiation. Three datasets (44 patients and 57 controls) were subjected to gene expression analysis. The analysis revealed 135 significant DEGs, of which CEACAM6, ENPP4, HDAC5, HPCAL1, PARVG, STYXL1, VPS28, ZBTB33, ZFP37 and CCDC58 were the top 10 DEGs. These genes were enriched in aerobic respiration, T-cell antigen receptor pathway, tricarboxylic acid metabolic process, vitamin D receptor pathway, toll-like receptor signaling, and endoplasmic reticulum (ER) unfolded protein response. The results of text mining and gene expression analyses used as attribute values for machine learning (ML) analysis. The decision tree, extra-tree regressor and random forest algorithms were used in ML analysis to identify unique markers that could be used as diabetes diagnosis tools. These algorithms produced prediction models with accuracy ranges from 0.6364 to 0.88 and overall confidence interval (CI) of 95%. There were 39 biomarkers that could distinguish diabetic and non-diabetic patients, 12 of which were repeated multiple times. The majority of these genes are associated with stress response, signalling regulation, locomotion, cell motility, growth, and muscle adaptation. Machine learning algorithms highlighted the use of the HLA-DQB1 gene as a biomarker for diabetes early detection. Our data mining and gene expression analysis have provided useful information about potential biomarkers in diabetes.
Collapse
Affiliation(s)
- Amira M. Elsherbini
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35116, Egypt
| | - Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35116, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35116, Egypt
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Joaira Bakkach
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University Morocco, Tétouan 93000, Morocco
| |
Collapse
|
14
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
15
|
Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Solovyeva EM, Lipatova AV, Kjeldsen F, Gorshkov MV. DirectMS1Quant: Ultrafast Quantitative Proteomics with MS/MS-Free Mass Spectrometry. Anal Chem 2022; 94:13068-13075. [PMID: 36094425 DOI: 10.1021/acs.analchem.2c02255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, we presented the DirectMS1 method of ultrafast proteome-wide analysis based on minute-long LC gradients and MS1-only mass spectra acquisition. Currently, the method provides the depth of human cell proteome coverage of 2500 proteins at a 1% false discovery rate (FDR) when using 5 min LC gradients and 7.3 min runtime in total. While the standard MS/MS approaches provide 4000-5000 protein identifications within a couple of hours of instrumentation time, we advocate here that the higher number of identified proteins does not always translate into better quantitation quality of the proteome analysis. To further elaborate on this issue, we performed a one-on-one comparison of quantitation results obtained using DirectMS1 with three popular MS/MS-based quantitation methods: label-free (LFQ) and tandem mass tag quantitation (TMT), both based on data-dependent acquisition (DDA) and data-independent acquisition (DIA). For comparison, we performed a series of proteome-wide analyses of well-characterized (ground truth) and biologically relevant samples, including a mix of UPS1 proteins spiked at different concentrations into an Echerichia coli digest used as a background and a set of glioblastoma cell lines. MS1-only data was analyzed using a novel quantitation workflow called DirectMS1Quant developed in this work. The results obtained in this study demonstrated comparable quantitation efficiency of 5 min DirectMS1 with both TMT and DIA methods, yet the latter two utilized a 10-20-fold longer instrumentation time.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
16
|
Hamad A, Soboleva AV, Vorobyev PO, Mahmoud M, Vasilenko KV, Chumakov PM, Lipatova AV. Development of a recombinant oncolytic poliovirus type 3 strain with altered cell tropism. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diffuse gliomas are incurable, prevalent, and aggressive central nervous system tumors. Therefore, the development of selective oncolytic viral strains for malignant neoplasms is highly relevant. This study aimed to create an oncolytic virus based on a vaccine strain of poliovirus type 3 with natural antitumor activity. To achieve this goal, we replaced the internal ribosome entry site (IRES) of poliovirus with the corresponding fragment of human rhinovirus 30. The resulting recombinant oncolytic strain RVP3 retained the serotype of poliovirus type 3, as confirmed by virus neutralization micro-test with specific antiserum. In addition, the oncolytic efficacy of RVP3 was assessed in vitro on a broad panel of cell cultures. According to the results, RVP3 has changed its tropism, losing the ability to replicate in conditionally normal cell lines of embryonic astrocytes and embryonic fibroblasts while retaining the ability to replicate in tumor cells.
Collapse
Affiliation(s)
- A Hamad
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - AV Soboleva
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - PO Vorobyev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - M Mahmoud
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | - PM Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - AV Lipatova
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| |
Collapse
|