1
|
Pusta A, Tertis M, Kezan D, Bogdan D, Suciu M, Pană O, Fizeșan I, Graur F, Cristea C, Al-Hajjar N. Label-free electrochemical aptasensor for the detection of HepG2 hepatocellular carcinoma cells. Mikrochim Acta 2024; 191:413. [PMID: 38904692 PMCID: PMC11192815 DOI: 10.1007/s00604-024-06479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy and is characterized by increasing incidence and high mortality rates. Current methods for the screening and diagnosis of HCC exhibit inherent limitations, highlighting the ever-growing need for the development of new methods for the early diagnosis of HCC. The aim of this work was to develop a novel electrochemical aptasensor for the detection of HepG2 cells, a type of circulating tumor cells that can be used as biomarkers for the early detection of HCC. A carbon screen-printed electrode was functionalized with a composite suspension containing graphene oxide, chitosan, and polyaniline nanoparticles to increase the electrode surface and provide anchoring sites for the HepG2 cell-specific aptamer. The aptamer was immobilized on the surface of the functionalized electrode using multipulse amperometry, an innovative technique that significantly reduces the time required for aptamer immobilization. The innovative platform was successfully employed for the first time for the amplification-free detection of HepG2 cells in a linear range from 10 to 200,000 cells/mL, with a limit of detection of 10 cells/mL. The platform demonstrated high selectivity and stability and was successfully used for the detection of HepG2 cells in spiked human serum samples with excellent recoveries.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca, 400349, Romania
- Department of Medical Devices, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca, 400349, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca, 400349, Romania.
| | - Denisa Kezan
- Department of Analytical Chemistry, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca, 400349, Romania
| | - Diana Bogdan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, Cluj-Napoca, 400293, Romania
| | - Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, Cluj-Napoca, 400293, Romania
- Electron Microscopy Centre "C. Craciun", Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, 5- 7 Clinicilor Str., Romania, 400006 , Cluj-Napoca
| | - Ovidiu Pană
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, Cluj-Napoca, 400293, Romania
| | - Ionel Fizeșan
- Department of Toxicology, Iuliu Hațieganu" University of Medicine and Pharmacy, 8 Victor Babeș, Cluj- Napoca, 400012, Romania
| | - Florin Graur
- Department of Surgery 3, Iuliu Hațieganu" University of Medicine and Pharmacy, Croitorilor, Cluj- Napoca, 19-21, 400162, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca, 400349, Romania.
| | - Nadim Al-Hajjar
- Department of Surgery 3, Iuliu Hațieganu" University of Medicine and Pharmacy, Croitorilor, Cluj- Napoca, 19-21, 400162, Romania
| |
Collapse
|
2
|
Payne K, Brooks J, Batis N, Khan N, El-Asrag M, Nankivell P, Mehanna H, Taylor G. Feasibility of mass cytometry proteomic characterisation of circulating tumour cells in head and neck squamous cell carcinoma for deep phenotyping. Br J Cancer 2023; 129:1590-1598. [PMID: 37735243 PMCID: PMC10645808 DOI: 10.1038/s41416-023-02428-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Circulating tumour cells (CTCs) are a potential cancer biomarker, but current methods of CTC analysis at single-cell resolution are limited. Here, we describe high-dimensional single-cell mass cytometry proteomic analysis of CTCs in HNSCC. METHODS Parsortix microfluidic-enriched CTCs from 14 treatment-naïve HNSCC patients were analysed by mass cytometry analysis using 41 antibodies. Immune cell lineage, epithelial-mesenchymal transition (EMT), stemness, proliferation and immune checkpoint expression was assessed alongside phosphorylation status of multiple signalling proteins. Patient-matched tumour gene expression and CTC EMT profiles were compared. Standard bulk CTC RNAseq was performed as a baseline comparator to assess mass cytometry data. RESULTS CTCs were detected in 13/14 patients with CTC counts of 2-24 CTCs/ml blood. Unsupervised clustering separated CTCs into epithelial, early EMT and advanced EMT groups that differed in signalling pathway activation state. Patient-specific CTC cluster patterns separated into immune checkpoint low and high groups. Patient tumour and CTC EMT profiles differed. Mass cytometry outperformed bulk RNAseq to detect CTCs and characterise cell phenotype. DISCUSSION We demonstrate mass cytometry allows high-plex proteomic characterisation of CTCs at single-cell resolution and identify common CTC sub-groups with potential for novel biomarker development and immune checkpoint inhibitor treatment stratification.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaos Batis
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mohammed El-Asrag
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Sawabata N. Circulating Tumor Cells: From the Laboratory to the Cancer Clinic; A Closing Comment. Cancers (Basel) 2023; 15:cancers15030939. [PMID: 36765896 PMCID: PMC9913766 DOI: 10.3390/cancers15030939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer recurrence not only shortens the life span of cancer patients, but also leads to a decrease in QOL, so it needs to be controlled [...].
Collapse
Affiliation(s)
- Noyiyoshi Sawabata
- Department of Thoracic and Cardio-Vascular Surgery, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8552, Japan
| |
Collapse
|
4
|
Obermayr E, Koppensteiner N, Heinzl N, Schuster E, Holzer B, Fabikan H, Weinlinger C, Illini O, Hochmair MJ, Zeillinger R. Effect of short-term storage of blood samples on gene expression in lung cancer patients. Clin Chem Lab Med 2023; 61:294-301. [PMID: 36395488 DOI: 10.1515/cclm-2022-0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The stability of gene transcripts associated with the presence of circulating tumor cells (CTCs) has been predominantly studied in cultured cancer cell lines added to blood samples under artificial conditions. In the present study the effect of storage on CTC-related transcripts was assessed in blood samples taken from patients with non-small lung cancer (n=58). METHODS The blood samples were split in two equal parts to compare the gene expression with and without storage for 24 h at ambient temperature without preservative added. After enrichment using the microfluidic Parsortix® technology, the expression levels of selected genes were assessed using quantitative PCR following a gene-specific pre-amplification. The prognostic relevance of each gene in fresh and stored blood samples was evaluated using the R-package Survminer. RESULTS Some genes were either not affected (TWIST1, CDH5, CK19) or upregulated upon storage (NANOG, MET, UCHL1) but still associated with poor prognosis. In contrast, ERBB3, PTHLH, EpCAM, and TERT were no longer associated with the overall survival of the patients. CONCLUSIONS The study demonstrates the surprising stability of CTC-related transcripts, which makes overnight shipping of native blood samples possible. Careful verification is required when using model systems - such as normal blood spiked with tumor cells - or other CTC-related markers, as individual transcripts may respond differently to storage.
Collapse
Affiliation(s)
- Eva Obermayr
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nina Koppensteiner
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nicole Heinzl
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Eva Schuster
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Barbara Holzer
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Hannah Fabikan
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Christoph Weinlinger
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Oliver Illini
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Klinik Floridsdorf, Vienna Healthcare Group, Vienna, Austria
| | - Maximilian J Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Klinik Floridsdorf, Vienna Healthcare Group, Vienna, Austria
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Aktar S, Baghaie H, Islam F, Gopalan V, Lam AKY. Current Status of Circulating Tumor Cells in Head and Neck Squamous Cell Carcinoma: A Review. Otolaryngol Head Neck Surg 2023; 168:988-1005. [PMID: 36939466 DOI: 10.1002/ohn.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Circulating tumor cells (CTCs) are found in the blood of patients with cancer, including head and neck squamous cell carcinomas (HNSCCs). The aim is to review the most up-to-date status of CTCs for applications in patients with HNSCC. DATA SOURCES English articles in PubMed. REVIEW METHODS All the studies on CTCs in HNSCCs in the literature were reviewed. CONCLUSIONS There is emerging information on the diagnostic and prognostic value of CTCs in HNSCCs. Evidence also highlights the advantages of various downstream analysis approaches over circulating tumor DNA (ctDNA), such as single-CTC analysis, ex vivo, and in vivo expansion of CTCs. Multiple phenotypic surface markers (cytokeratins, EpCAM, vimentin, etc.), used for CTCs characterization using different immunoassays, could predict disease progression as well as patients' response to treatment efficacy. Immune checkpoint inhibitors' status in CTCs could also provide better insight into treatment. Clonal expansion of CTCs and single-cell analysis of CTCs are the most emerging fields nowadays which may offer an understanding of the mechanism of tumor evolution as well as therapeutic efficacy. Although several clinical trials are ongoing, limitations still exist in the detection and characterization of CTCs. Due to the lack of a gold standard protocol, the sensitivity and specificity of CTC enumeration methods vary. IMPLICATIONS FOR PRACTICE Prospective clinical trials are still needed before CTCs can be employed as diagnostic and prognostic markers in the clinical management of patients with HNSCC.
Collapse
Affiliation(s)
- Sharmin Aktar
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Hooman Baghaie
- School of Dentistry, University of Queensland, Herston, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Pathology Queensland, Gold Coast University Hospital, Southport, Australia
| |
Collapse
|
6
|
Payne K, Brooks J, Batis N, Taylor G, Nankivell P, Mehanna H. Characterizing the epithelial-mesenchymal transition status of circulating tumor cells in head and neck squamous cell carcinoma. Head Neck 2022; 44:2545-2554. [PMID: 35932094 PMCID: PMC9804280 DOI: 10.1002/hed.27167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs), in particular those undergoing an epithelial-mesenchymal transition (EMT), are a promising source of biomarkers in head and neck squamous cell carcinoma (HNSCC). Our aim was to validate a protocol using microfluidic enrichment (Parsortix platform) with flow-cytometry CTC characterization. METHOD Blood samples from 20 treatment naïve HNSCC patients underwent Parsortix enrichment and flow cytometry analysis to quantify CTCs and identify epithelial or EMT subgroups-correlated to clinical outcomes and EMT gene-expression in tumor tissue. RESULTS CTCs were detected in 65% of patients (mean count 4 CTCs/ml). CTCs correlated with advanced disease (p = 0.0121), but not T or N classification. Epithelial or EMT CTCs did not correlate with progression-free or overall survival. Tumor mesenchymal gene-expression did not correlate with CTC EMT expression (p = 0.347). DISCUSSION Microfluidic enrichment and flow cytometry successfully characterizes EMT CTCs in HNSCC. The lack of association between tumor and CTC EMT profile suggests CTCs may undergo an adaptive EMT in response to stimuli within the circulation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Graham Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
7
|
Deng Z, Wu S, Wang Y, Shi D. Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine 2022; 83:104237. [PMID: 36041264 PMCID: PMC9440384 DOI: 10.1016/j.ebiom.2022.104237] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that shed from the primary tumor and intravasate into the peripheral blood circulation system responsible for metastasis. Sensitive detection of CTCs from clinical samples can serve as an effective tool in cancer diagnosis and prognosis through liquid biopsy. Current CTC detection technologies mainly reply on the biomarker-mediated platforms including magnetic beads, microfluidic chips or size-sensitive microfiltration which can compromise detection sensitivity due to tumor heterogeneity. A more sensitive, biomarker independent CTCs isolation technique has been recently developed with the surface-charged superparamagnetic nanoprobe capable of different EMT subpopulation CTC capture from 1 mL clinical blood. In this review, this new strategy is compared with the conventional techniques on biomarker specificity, impact of protein corona, effect of glycolysis on cell surface charge, and accurate CTC identification. Correlations between CTC enumeration and molecular profiling in clinical blood and cancer prognosis are provided for clinical cancer management.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shengming Wu
- The Institute for Translational Nanomedicine Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, School of Medicine Tongji University, Shanghai 200092, PR China
| | - Yilong Wang
- The Institute for Translational Nanomedicine Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, School of Medicine Tongji University, Shanghai 200092, PR China.
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|