1
|
Yang KH, Yen CY, Wang SC, Chang FR, Chang MY, Chan CK, Jeng JH, Tang JY, Chang HW. 6- n-Butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.0 2,7]trideca-2,4,6,10-tetraene Improves the X-ray Sensitivity on Inhibiting Proliferation and Promoting Oxidative Stress and Apoptosis of Oral Cancer Cells. Biomedicines 2024; 12:458. [PMID: 38398060 PMCID: PMC10887088 DOI: 10.3390/biomedicines12020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.
Collapse
Affiliation(s)
- Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chieh-Kai Chan
- Department of Chemistry, University of Illinois Urbana, Champaign, IL 61820, USA;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
He KJ, Gong G, Liang E, Lv Y, Lin S, Xu J. Pan-cancer analysis of 60S Ribosomal Protein L7-Like 1 (RPL7L1) and validation in liver hepatocellular carcinoma. Transl Oncol 2024; 40:101844. [PMID: 38042135 PMCID: PMC10701367 DOI: 10.1016/j.tranon.2023.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND AND AIMS There is an association between cancer and increased ribosome biogenesis. At present, the RPL7L1 (60S Ribosomal Protein L7-Like 1) were less reported by literature search. Study reports that RPL7L1 is associated with mouse embryonic and skeletal muscle. The study of RPL7L1 on tumors has not been reported. METHODS Our team downloaded the pan-cancer dataset that is uniformly normalized from the UCSC database (N=19131). Our study examined the relationship between RPL7L1 expression level and clinical prognosis with methylation, anti-tumour immunity, functional states, MSI, TMB, DNSss, LOH and chemotherapeutic responses in 43 cancer types and subtypes. RESULTS AND CONCLUSIONS RPL7L1 was overexpressed in nine tumor types. Gene mutation, tumor microenvironment and methylation modification of RPL7L1 plays a key role in patient prognosis. And the high expression of RPL7L1 was associated with TMB, MSI, LOH especially LIHC and HNSC. We experimentally verified that genes can promote the proliferation and migration of tumor cells. Our study suggested that RPL7L1 biomarker can be used for treating cancer, detecting it, and predicting its prognosis.
Collapse
Affiliation(s)
- Ke-Jie He
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen China
| | - E Liang
- Xiamen Xianyue Hospital, Xiamen China
| | - Yangbo Lv
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China
| | - Shuiquan Lin
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China
| | - Jianguang Xu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| |
Collapse
|
3
|
Alsamman K, Alamri AM, Vatte C, Owaidah AY, Alhassan F, Mubarki R, El-Masry OS. Potential Candidate Genes for Therapeutic Targeting in Chronic Myeloid Leukemia: A Pilot Study. Asian Pac J Cancer Prev 2023; 24:3077-3085. [PMID: 37774059 PMCID: PMC10762750 DOI: 10.31557/apjcp.2023.24.9.3077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a prevalent hematological malignancy known for the presence of the Philadelphia chromosome and activation of the BCR-Abl kinase activity. Although tyrosine kinase inhibitors are widely used as the standard treatment, resistance remains a concern among certain patients. This study aimed to investigate the gene expression profile of a group of CML patients in comparison to a control group in order to identify novel candidate genes associated with the disease. METHODS Whole transcriptome sequencing was performed, and gene expression levels were validated using quantitative real-time PCR. Additionally, single nucleotide and insertion/deletion variants were analyzed in the selected candidate genes among 10 CML patients and 4 healthy control subjects. RESULTS Analysis revealed a set of differentially expressed genes, whose up- or downregulation was further confirmed by qRT-PCR. Among the upregulated genes in the patient group were ribosomal protein like (RPL) members, specifically RPL9, RPL34, RPL36A, and RPL39, while downregulation was observed in CCDC170, LDB1, and SBF1 compared to the healthy subjects. Furthermore, gene variant studies identified novel genetic changes in these candidate genes, suggesting potential clinical significance in CML. CONCLUSIONS This study highlights RPL9, RPL34, RPL36A, RPL39, CCDC170, LDB1, and SBF1 as potential targets in CML. Additionally, it underscores the importance of investigating these genes and their variants in larger cohort studies to assess their clinical significance in CML patients.
Collapse
MESH Headings
- Humans
- Pilot Projects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- LIM-Homeodomain Proteins
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Chronic Disease
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm
Collapse
Affiliation(s)
- Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia.
| | - Ali M. Alamri
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahaman Bin Faisal University, Alkhobar, Saudi Arabia.
| | - Chittibabu Vatte
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.
| | - Amani Y. Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia.
| | - Fatimah Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia.
| | - Roba Mubarki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia.
| | - Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
4
|
Wu HW, Wu JD, Yeh YP, Wu TH, Chao CH, Wang W, Chen TW. DoSurvive: A webtool for investigating the prognostic power of a single or combined cancer biomarker. iScience 2023; 26:107269. [PMID: 37609633 PMCID: PMC10440714 DOI: 10.1016/j.isci.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 08/24/2023] Open
Abstract
We present DoSurvive, a user-friendly survival analysis web tool and a cancer prognostic biomarker centered database. DoSurvive is the first database that allows users to perform multivariant survival analysis for cancers with customized gene/patient list. DoSurvive offers three survival analysis methods, Log rank test, Cox regression and accelerated failure time model (AFT), for users to analyze five types of quantitative features (mRNA, miRNA, lncRNA, protein and methylation of CpG islands) with four survival types, i.e. overall survival, disease-specific survival, disease-free interval, and progression-free interval, in 33 cancer types. Notably, the implemented AFT model provides an alternative method for genes/features which failed the proportional hazard assumption in Cox regression. With the unprecedented number of survival models implemented and high flexibility in analysis, DoSurvive is a unique platform for the identification of clinically relevant targets for cancer researcher and practitioners. DoSurvive is freely available at http://dosurvive.lab.nycu.edu.tw/.
Collapse
Affiliation(s)
- Hao-Wei Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jian-De Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yen-Ping Yeh
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Timothy H. Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Hong Chao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Weijing Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
5
|
Li M, Gao F, Li X, Gan Y, Han S, Yu X, Liu H, Li W. Stabilization of MCL-1 by E3 ligase TRAF4 confers radioresistance. Cell Death Dis 2022; 13:1053. [PMID: 36535926 PMCID: PMC9763423 DOI: 10.1038/s41419-022-05500-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The E3 ligase TNF receptor-associated factor 4 (TRAF4) is frequently overexpressed and closely related to poor prognosis in human malignancies. However, its effect on carcinogenesis and radiosensitivity in oral squamous cell carcinoma (OSCC) remains unclear. The present study found that TRAF4 was significantly upregulated in primary and relapsed OSCC tumor tissues. Depletion of TRAF4 markedly improved the sensitivity of OSCC cells to irradiation (IR) treatment, showing that tumor cell proliferation, colony formation and xenograft tumor growth were reduced. Mechanistically, IR promoted the interaction between TRAF4 and Akt to induce Akt K63-mediated ubiquitination and activation. TRAF4 knockout inhibited the phosphorylation of Akt and upregulated GSK3β activity, resulting in increased myeloid cell leukemia-1 (MCL-1) S159 phosphorylation, which disrupted the interaction of MCL-1 with Josephin domain containing 1 (JOSD1), and ultimately induced MCL-1 ubiquitination and degradation. Moreover, TRAF4 was positively correlated with MCL-1 in primary and in radiotherapy-treated, relapsed tumor tissues. An MCL-1 inhibitor overcame radioresistance in vitro and in vivo. Altogether, the present findings suggest that TRAF4 confers radioresistance in OSCC by stabilizing MCL-1 through Akt signaling, and that targeting TRAF4 may be a promising therapeutic strategy to overcome radioresistance in OSCC.
Collapse
Affiliation(s)
- Ming Li
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,Changsha Stomatological Hospital, Changsha, Hunan 410004 People’s Republic of China ,grid.488482.a0000 0004 1765 5169School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208 People’s Republic of China ,grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Feng Gao
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.431010.7Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Xiaoying Li
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Yu Gan
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Shuangze Han
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.33199.310000 0004 0368 7223Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Xinfang Yu
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - Haidan Liu
- grid.452708.c0000 0004 1803 0208Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People’s Republic of China ,grid.452708.c0000 0004 1803 0208Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People’s Republic of China
| | - Wei Li
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| |
Collapse
|