1
|
Zakariya F, Salem FK, Alamrain AA, Sanker V, Abdelazeem ZG, Hosameldin M, Tan JK, Howard R, Huang H, Awuah WA. Refining mutanome-based individualised immunotherapy of melanoma using artificial intelligence. Eur J Med Res 2024; 29:25. [PMID: 38183141 PMCID: PMC10768232 DOI: 10.1186/s40001-023-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Using the particular nature of melanoma mutanomes to develop medicines that activate the immune system against specific mutations is a game changer in immunotherapy individualisation. It offers a viable solution to the recent rise in resistance to accessible immunotherapy alternatives, with some patients demonstrating innate resistance to these drugs despite past sensitisation to these agents. However, various obstacles stand in the way of this method, most notably the practicality of sequencing each patient's mutanome, selecting immunotherapy targets, and manufacturing specific medications on a large scale. With the robustness and advancement in research techniques, artificial intelligence (AI) is a potential tool that can help refine the mutanome-based immunotherapy for melanoma. Mutanome-based techniques are being employed in the development of immune-stimulating vaccines, improving current options such as adoptive cell treatment, and simplifying immunotherapy responses. Although the use of AI in these approaches is limited by data paucity, cost implications, flaws in AI inference capabilities, and the incapacity of AI to apply data to a broad population, its potential for improving immunotherapy is limitless. Thus, in-depth research on how AI might help the individualisation of immunotherapy utilising knowledge of mutanomes is critical, and this should be at the forefront of melanoma management.
Collapse
Affiliation(s)
- Farida Zakariya
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Fatma K Salem
- Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Vivek Sanker
- Research Assistant, Dept. Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | - Zainab G Abdelazeem
- Division of Molecular Biology, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | - Rachel Howard
- School of Clinical Medicine, University of Cambridge, Cambridge, England
| | - Helen Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine.
| |
Collapse
|
2
|
Martin-Morales N, Padial-Molina M, Tovar I, De Araujo Farias V, Hernández-Cortés P, Ramirez-Moreno E, Caba-Molina M, Davis J, Carrero Castaño A, Ruiz de Almodovar JM, Galindo-Moreno P, Oliver-Pozo J, O'Valle Ravassa FJ. IMP3 Immunohistochemical Expression Is Related with Progression and Metastases in Xenografted and Cutaneous Melanomas. Pathobiology 2023; 91:132-143. [PMID: 37797584 DOI: 10.1159/000533916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Insulin-like growth factor-II messenger RNA-binding protein-3 (IMP3) over-expression is a predictor of tumor recurrence and metastases in some types of human melanoma. Our objective was to evaluate the immunohistochemical expression of IMP3 and other molecules related to tumor prognosis in melanoma-xeno-tumors undergoing treatment. We test the effect of radiotherapy (RT) and mesenchymal stromal cells (MSCs) treatment, analyzing the tumorigenic and metastatsizing capacity in a mice melanoma xenograft model. MATERIALS AND METHODS We inoculated A375 and G361 human melanoma cell lines into NOD/SCID gamma mice (n = 64). We established a control group, a group treated with MSCs, a group treated with MSCs plus RT, and a group treated with RT. We assessed the immunohistochemical expression of IMP3, E-cadherin, N-cadherin, PARP1, HIF-1α, and the proliferation marker Ki-67. Additionally, we performed a retrospective study including 114 histological samples of patients diagnosed with malignant cutaneous superficial spreading melanoma (n = 104) and nodular melanoma (n = 10) with at least 5 years of follow-up. RESULTS Most morphological and immunohistochemical features show statistically significant differences between the 2 cell lines. The A375 cell line induced the formation of metastases, while the G361 cell line provoked tumor formation but not metastases. All three treatments reduced the cell proliferation evaluated by the Ki-67 nuclear antigen (p = 0.000, one-way ANOVA test) and reduced the number of metastases (p = 0.004, one-way ANOVA test). In addition, the tumor volumes reduced in comparison with the control groups, 31.74% for RT + MSCs in the A357 tumor cell line, and 89.84% RT + MSCs in the G361 tumor cell line. We also found that IMP3 expression is associated with greater tumor aggressiveness and was significantly correlated with cell proliferation (measured by the expression of Ki-67), the number of metastases, and reduced expression of adhesion molecules. CONCLUSIONS The combined treatment of RT and MSCs on xenografted melanomas reduces tumor size, metastases frequency, and the epithelial to mesenchymal transition/PARP1 metastatic phenotype. This treatment also reduces the expression of molecules related to cellular proliferation (Ki-67), molecules that facilitate the metastatic process (E-cadherin), and molecules related with prognosis (IMP3).
Collapse
Affiliation(s)
- Natividad Martin-Morales
- Department of Pathology, University of Granada, Granada, Spain,
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain,
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
| | - Isabel Tovar
- Department of Oncology and Radiotherapy, Virgen de las Nieves University Hospital, Granada, Spain
| | - Virginea De Araujo Farias
- Institute of Biopathology and Medicine Regenerative (IBIMER, CIBM), University of Granada, Granada, Spain
| | - Pedro Hernández-Cortés
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
- Department of Orthopedic Surgery, Clinic San Cecilio University Hospital, Granada, Spain
| | | | - Mercedes Caba-Molina
- Department of Pathology, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
- Intercentre Provincial Pathological Anatomy Unit of the San Cecilio Clinical University Hospital, Granada, Spain
| | - Justin Davis
- Department of Business Administration, Washington and Lee University, Lexington, Virginia, USA
| | - Alejandro Carrero Castaño
- Intercentre Provincial Pathological Anatomy Unit of the San Cecilio Clinical University Hospital, Granada, Spain
| | | | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
| | - Javier Oliver-Pozo
- Institute of Parasitology and Biomedicine López Neyra, CSIC, Granada, Spain
| | - Francisco Javier O'Valle Ravassa
- Department of Pathology, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
- Institute of Biopathology and Medicine Regenerative (IBIMER, CIBM), University of Granada, Granada, Spain
| |
Collapse
|
3
|
Fukuda Y, Kim SH, Bustos MA, Cho SN, Roszik J, Burks JK, Kim H, Hoon DS, Grimm EA, Ekmekcioglu S. Inhibition of Microsomal Prostaglandin E2 Synthase Reduces Collagen Deposition in Melanoma Tumors and May Improve Immunotherapy Efficacy by Reducing T-cell Exhaustion. CANCER RESEARCH COMMUNICATIONS 2023; 3:1397-1408. [PMID: 37529399 PMCID: PMC10389052 DOI: 10.1158/2767-9764.crc-23-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
The arachidonic acid pathway participates in immunosuppression in various types of cancer. Our previous observation detailed that microsomal prostaglandin E2 synthase 1 (mPGES-1), an enzyme downstream of cyclooxygenase 2 (COX-2), limited antitumor immunity in melanoma; in addition, genetic depletion of mPGES-1 specifically enhanced immune checkpoint blockade therapy. The current study set out to distinguish the roles of mPGES-1 from those of COX-2 in tumor immunity and determine the potential of mPGES-1 inhibitors for reinforcing immunotherapy in melanoma. Genetic deletion of mPGES-1 showed different profiles of prostaglandin metabolites from that of COX-2 deletion. In our syngeneic mouse model, mPGES-1-deficient cells exhibited similar tumorigenicity to that of COX-2-deficient cells, despite a lower ability to suppress PGE2 synthesis by mPGES-1 depletion, indicating the presence of factors other than PGE2 that are likely to regulate tumor immunity. RNA-sequencing analysis revealed that mPGES-1 depletion reduced the expressions of collagen-related genes, which have been found to be associated with immunosuppressive signatures. In our mouse model, collagen was reduced in mPGES-1-deficient tumors, and phenotypic analysis of tumor-infiltrating lymphocytes indicated that mPGES-1-deficient tumors had fewer TIM3+ exhausted CD8+ T cells compared with COX-2-deficient tumors. CAY10678, an mPGES-1 inhibitor, was equivalent to celecoxib, a selective COX-2 inhibitor, in reinforcing anti-PD-1 treatment. Our study indicates that mPGES-1 inhibitors represent a promising adjuvant for immunotherapies in melanoma by reducing collagen deposition and T-cell exhaustion. Significance Collagen is a predominant component of the extracellular matrix that may influence the tumor immune microenvironment for cancer progression. We present here that mPGES-1 has specific roles in regulating tumor immunity, associated with several collagen-related genes and propose that pharmacologic inhibition of mPGES-1 may hold therapeutic promise for improving immune checkpoint-based therapies.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matias A. Bustos
- Department of Translational Molecular Medicine and Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California
| | - Sung-Nam Cho
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dave S.B. Hoon
- Department of Translational Molecular Medicine and Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California
| | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|