1
|
Trautwein C. Quantitative Blood Serum IVDr NMR Spectroscopy in Clinical Metabolomics of Cancer, Neurodegeneration, and Internal Medicine. Methods Mol Biol 2025; 2855:427-443. [PMID: 39354321 DOI: 10.1007/978-1-0716-4116-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Despite more than two decades of metabolomics having joined the "omics" scenery, to date only a few novel blood metabolite biomarkers have found their way into the clinic. This is changing now by massive large-scale population metabolic phenotyping for both healthy and disease cohorts. Here, nuclear magnetic resonance (NMR) spectroscopy is a method of choice, as typical blood serum markers can be easily quantified and by knowledge of precise reference concentrations, more and more NMR-amenable biomarkers are established, moving NMR from research to clinical application. Besides customized approaches, to date two major commercial platforms have evolved based on either 600 MHz (14.1 Tesla) or 500 MHz (11.7 Tesla) high-field NMR systems. This chapter provides an introduction into the field of quantitative in vitro diagnostics research (IVDr) NMR at 600 MHz and its application within clinical research of cancer, neurodegeneration, and internal medicine.
Collapse
|
2
|
Wu DN, Fajiculay E, Hsu CP, Hu CM, Lee LW, Tzou DLM. Investigation of pH-dependent 1H NMR urine metabolite profiles for diagnosis of obesity-related disordering. Int J Obes (Lond) 2024:10.1038/s41366-024-01695-0. [PMID: 39658677 DOI: 10.1038/s41366-024-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Human urine is highly favorable for 1H NMR metabolomics analyses of obesity-related diseases, such as non-alcoholic fatty liver, type 2 diabetes, and hyperlipidemia (HL), due to its non-invasiveness and ease of large-scale collection. However, the wide range of intrinsic urine pH (5.5-8.5) results in inevitably chemical shift and signal intensity modulations in the 1H NMR spectra. For patients where acidic urine pH is closely linked to obesity-related disease phenotypes, the pH-dependent modulations complicate the spectral analysis and deteriorate quantifications of urine metabolites. METHODS We characterized human urine metabolites by NMR at intrinsic urine pH, across urine pH 4.5 to 9.5, to account for pH-dependent modulations. A pH-dependent chemical shift database for quantifiable urine metabolites was generated and integrated into a "pH intelligence" program developed for quantifications of pH-dependent modulations at various pH. The 1H NMR spectra of urines collected from patients with Ob-HL and healthy controls were compared to uncover potential metabolic biomarkers of Ob-HL disease. RESULTS Three urine metabolites were unveiled by pH-dependent NMR approach, i.e., TMAO, glycine, and pyruvic acid, with VIP score >1.0 and significant q-value < 0.05, that represent as potential biomarkers for discriminating Ob-HL from healthy controls. Further ROC-AUC analyses revealed that TMAO alone achieved the highest diagnostic accuracy (AUC 0.902), surpassed to that obtained by neutralizing pH approach (AUC 0.549) and enabled better recovering potential urine metabolites from the Ob-HL disease phenotypes. CONCLUSIONS We concluded that 1H NMR-derived urine metabolite profile represents a snapshot that can reveal the physiological condition of humans in either a healthy or diseased state under intrinsic urine pH. We demonstrated a systematic analysis of pH-dependent modulations on the human urine metabolite signals and further developed software for quantification of urine metabolite profiles with high accuracy, enabling the uncovering of potential metabolite biomarkers in clinical diagnosis applications.
Collapse
Affiliation(s)
- Dan-Ni Wu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- TIGP, Chemical Biology and Molecular Biophysics Program, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Wen Lee
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Der-Lii M Tzou
- TIGP, Chemical Biology and Molecular Biophysics Program, Academia Sinica, Taipei, Taiwan.
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
- Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Chohan DP, Biswas S, Wankhede M, Menon P, K A, Basha S, Rodrigues J, Mukunda DC, Mahato KK. Assessing Breast Cancer through Tumor Microenvironment Mapping of Collagen and Other Biomolecule Spectral Fingerprints─A Review. ACS Sens 2024; 9:4364-4379. [PMID: 39175278 PMCID: PMC11443534 DOI: 10.1021/acssensors.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.
Collapse
Affiliation(s)
- Diya Pratish Chohan
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Shimul Biswas
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mrunmayee Wankhede
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Poornima Menon
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Ameera K
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Shaik Basha
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | | | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
4
|
Talarico MCR, Derchain S, da Silva LF, Sforça ML, Rocco SA, Cardoso MR, Sarian LO. Metabolomic Profiling of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy for Predicting Disease-Free and Overall Survival. Int J Mol Sci 2024; 25:8639. [PMID: 39201325 PMCID: PMC11354796 DOI: 10.3390/ijms25168639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer (BC) remains a significant global health concern, with neoadjuvant chemotherapy (NACT) offering preoperative benefits like tumor downstaging and treatment response assessment. However, identifying factors influencing post-NACT treatment response and survival outcomes is challenging. Metabolomic approaches offer promising insights into understanding these outcomes. This study analyzed the serum of 80 BC patients before and after NACT, followed for up to five years, correlating with disease-free survival (DFS) and overall survival (OS). Using untargeted nuclear magnetic resonance (NMR) spectroscopy and a novel statistical model that avoids collinearity issues, we identified metabolic changes associated with survival outcomes. Four metabolites (histidine, lactate, serine, and taurine) were significantly associated with DFS. We developed a metabolite-related survival score (MRSS) from these metabolites, stratifying patients into low- and high-risk relapse groups, independent of classical prognostic factors. High-risk patients had a hazard ratio (HR) for DFS of 3.42 (95% CI 1.51-7.74; p = 0.003) after adjustment for disease stage and age. A similar trend was observed for OS (HR of 3.34, 95% CI 1.64-6.80; p < 0.001). Multivariate Cox proportional hazards analysis confirmed the independent prognostic value of the MRSS. Our findings suggest the potential of metabolomic data, alongside traditional markers, in guiding personalized treatment decisions and risk stratification in BC patients undergoing NACT. This study provides a methodological framework for leveraging metabolomics in survival analyses.
Collapse
Affiliation(s)
- Maria Cecília Ramiro Talarico
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, University of Campinas (UNICAMP-Universidade Estadual de Campinas), Campinas 13083-881, SP, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, University of Campinas (UNICAMP-Universidade Estadual de Campinas), Campinas 13083-881, SP, Brazil
| | | | - Maurício L. Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Silvana A. Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Marcella R. Cardoso
- Division of Gynecologic Oncology-MGH Global Disaster Response, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Global Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luís Otávio Sarian
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, University of Campinas (UNICAMP-Universidade Estadual de Campinas), Campinas 13083-881, SP, Brazil
| |
Collapse
|
5
|
Vignoli A, Miolo G, Tenori L, Buonadonna A, Lombardi D, Steffan A, Scalone S, Luchinat C, Corona G. Novel metabolomics-biohumoral biomarkers model for predicting survival of metastatic soft-tissue sarcomas. iScience 2023; 26:107678. [PMID: 37752948 PMCID: PMC10518687 DOI: 10.1016/j.isci.2023.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Soft tissue sarcomas (STSs) are rare malignant tumors that are difficult to prognosticate using currently available instruments. Omics sciences could provide more accurate and individualized survival predictions for patients with metastatic STS. In this pilot, hypothesis-generating study, we integrated clinicopathological variables with proton nuclear magnetic resonance (1H NMR) plasma metabolomic and lipoproteomic profiles, capturing both tumor and host characteristics, to identify novel prognostic biomarkers of 2-year survival. Forty-five metastatic STS (mSTS) patients with prevalent leiomyosarcoma and liposarcoma histotypes receiving trabectedin treatment were enrolled. A score combining acetate, triglycerides low-density lipoprotein (LDL)-2, and red blood cell count was developed, and it predicts 2-year survival with optimal results in the present cohort (84.4% sensitivity, 84.6% specificity). This score is statistically significant and independent of other prognostic factors such as age, sex, tumor grading, tumor histotype, frailty status, and therapy administered. A nomogram based on these 3 biomarkers has been developed to inform the clinical use of the present findings.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Angela Buonadonna
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Davide Lombardi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Simona Scalone
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- GiottoBiotech s.r.l, Sesto Fiorentino, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
6
|
Sawada MIBAC, de Fátima Mello Santana M, Reis M, de Assis SIS, Pereira LA, Santos DR, Nunes VS, Correa-Giannella MLC, Gebrim LH, Passarelli M. Increased plasma lipids in triple-negative breast cancer and impairment in HDL functionality in advanced stages of tumors. Sci Rep 2023; 13:8998. [PMID: 37268673 DOI: 10.1038/s41598-023-35764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
The association between plasma lipids and breast cancer (BC) has been extensively explored although results are still conflicting especially regarding the relationship with high-density lipoprotein cholesterol (HDLc) levels. HDL mediates cholesterol and oxysterol removal from cells limiting sterols necessary for tumor growth, inflammation, and metastasis and this may not be reflected by measuring HDLc. We addressed recently diagnosed, treatment-naïve BC women (n = 163), classified according to molecular types of tumors and clinical stages of the disease, in comparison to control women (CTR; n = 150) regarding plasma lipids and lipoproteins, HDL functionality and composition in lipids, oxysterols, and apo A-I. HDL was isolated by plasma discontinuous density gradient ultracentrifugation. Lipids (total cholesterol, TC; triglycerides, TG; and phospholipids, PL) were determined by enzymatic assays, apo A-I by immunoturbidimetry, and oxysterols (27, 25, and 24-hydroxycholesterol), by gas chromatography coupled with mass spectrometry. HDL-mediated cell cholesterol removal was determined in macrophages previously overloaded with cholesterol and 14C-cholesterol. Lipid profile was similar between CTR and BC groups after adjustment per age. In the BC group, lower concentrations of TC (84%), TG (93%), PL (89%), and 27-hydroxicholesterol (61%) were observed in HDL, although the lipoprotein ability in removing cell cholesterol was similar to HDL from CRT. Triple-negative (TN) BC cases presented higher levels of TC, TG, apoB, and non-HDLc when compared to other molecular types. Impaired HDL functionality was observed in more advanced BC cases (stages III and IV), as cholesterol efflux was around 28% lower as compared to stages I and II. The altered lipid profile in TN cases may contribute to channeling lipids to tumor development in a hystotype with a more aggressive clinical history. Moreover, findings reinforce the dissociation between plasma levels of HDLc and HDL functionality in determining BC outcomes.
Collapse
Affiliation(s)
- Maria Isabela Bloise Alves Caldas Sawada
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Centro de Referência da Saúde da Mulher (Hospital Pérola Byington), São Paulo, Brazil
- Hospital da Força Aérea de São Paulo, São Paulo, Brazil
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mozania Reis
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler, São Paulo, Brazil
| | - Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Alves Pereira
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Danielle Ribeiro Santos
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Valéria Sutti Nunes
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Cardillo Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio Lípides (LIM18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Henrique Gebrim
- Centro de Referência da Saúde da Mulher (Hospital Pérola Byington), São Paulo, Brazil
| | - Marisa Passarelli
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Qiu Y, Xu Z, Xie Q, Zhang R, Wang L, Zhao L, Liu H. Association of plasma lipid metabolism profiles with overall survival for patients with gastric cancer undergoing gastrectomy based on 1H-NMR spectroscopy. Nutr Metab (Lond) 2023; 20:7. [PMID: 36750880 PMCID: PMC9903497 DOI: 10.1186/s12986-023-00728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Lipid metabolism dysregulation is a prominent metabolic alteration in various cancers. The study aimed to explore the association of plasma lipid metabolism profiles with overall survival (OS) for gastric cancer (GC) patients who received gastrectomy. METHODS GC patients who were treated with gastrectomy and measured with plasma lipid metabolism profiles using proton nuclear magnetic resonance (1H-NMR) spectroscopy in Nanfang Hospital between January 1, 2017, and October 31, 2018, were recruited. The Least Absolute Shrinkage and Selection Operator (LASSO) regression model was used to analyze variables selected by univariate analysis for OS. An index of plasma lipid metabolism profiles, named plasma lipid metabolism index (PLMI), was constructed by variables' coefficients in LASSO regression to explore its association with OS and its role in the prediction model. RESULTS A total of 158 GC patients were included in this study. Four of the 110 lipid profiles, including LDL-5 Apo-B, LDL-4 Cholesterol, HDL-4 Apo-A2, and HDL-4 Free Cholesterol, were selected to construct the PLMI. The optimal cut-off value of PLMI for OS was used to classify the population into two subgroups, the high PLMI group (≥ - 0.163) and the low PLMI group (< - 0.163). The high PLMI group had a shorter OS (p = 0.0034) and was the independent risk factor for OS (Hazard Ratio = 2.13, 95% Confidence Interval (CI): 1.07-4.22, p = 0.031) after adjusting for perineural invasion and tumor stage. In subsets of the I-III stage and treating postoperative chemotherapy, high PLMI also had an unfavorable correlation with OS (p = 0.016 and p = 0.0086, respectively). The nomogram prediction models of both the training cohort and validation cohort showed good calibration and discrimination with the concordance indexes of 0.806 (95% CI, 0.732-0.880) in the training cohort and 0.794 (95% CI, 0.725-0.862) in the validation cohort. CONCLUSIONS This study found that the index derived from the LDL-5 Apo-B, LDL-4 Cholesterol, HDL-4 Apo-A2, and HDL-4 Free Cholesterol, was significantly associated with overall survival, suggesting that regulating lipid metabolisms might improve the prognosis for GC patients.
Collapse
Affiliation(s)
- Yaopeng Qiu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Zhou Xu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Qingfeng Xie
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Renyi Zhang
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Luyao Wang
- Guangdong IFV Biomedical Technology Co., Ltd, Foshan, China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Vignoli A, Meoni G, Ghini V, Di Cesare F, Tenori L, Luchinat C, Turano P. NMR-Based Metabolomics to Evaluate Individual Response to Treatments. Handb Exp Pharmacol 2023; 277:209-245. [PMID: 36318327 DOI: 10.1007/164_2022_618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Giskeødegård GF, Madssen TS, Sangermani M, Lundgren S, Wethal T, Andreassen T, Reidunsdatter RJ, Bathen TF. Longitudinal Changes in Circulating Metabolites and Lipoproteins After Breast Cancer Treatment. Front Oncol 2022; 12:919522. [PMID: 35785197 PMCID: PMC9245384 DOI: 10.3389/fonc.2022.919522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
The multimodal treatment of breast cancer may induce long term effects on the metabolic profile and increase the risk of future cardiovascular disease. In this study, we characterized longitudinal changes in serum lipoprotein subfractions and metabolites after breast cancer treatment, aiming to determine the long-term effect of different treatment modalities. Further, we investigated the prognostic value of treatment-induced changes in breast cancer-specific and overall 10-year survival. In this study, serum samples from breast cancer patients (n = 250) were collected repeatedly before and after radiotherapy, and serum metabolites and lipoprotein subfractions were quantified by NMR spectroscopy. Longitudinal changes were assessed by univariate and multivariate data analysis methods applicable for repeated measures. Distinct changes were detectable in levels of lipoprotein subfractions and circulating metabolites during the first year, with similar changes despite large differences in treatment regimens. We detect increased free cholesterol and decreased esterified cholesterol levels of HDL subfractions, a switch towards larger LDL particles and higher total LDL-cholesterol, in addition to a switch in the glutamine-glutamate ratio. Non-survivors had different lipid profiles from survivors already at baseline. To conclude, our results show development towards an atherogenic lipid profile in breast cancer patients with different treatment regimens.
Collapse
Affiliation(s)
- Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Torfinn S. Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matteo Sangermani
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medicine, Stroke Unit, St. Olavs University Hospital, Trondheim, Norway
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Randi J. Reidunsdatter
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|