1
|
Wang T, Tian L, Wei B, Li J, Zhang C, Long R, Zhu X, Zhang Y, Wang B, Tang G, Yang J, Guo Y. Effect of fibroblast heterogeneity on prognosis and drug resistance in high-grade serous ovarian cancer. Sci Rep 2024; 14:26617. [PMID: 39496775 PMCID: PMC11535537 DOI: 10.1038/s41598-024-77630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Tumor heterogeneity is associated with poor prognosis and drug resistance, leading to therapeutic failure. Here, we used tumor evolution analysis to determine the intra- and intertumoral heterogeneity of high-grade serous ovarian cancer (HGSOC) and analyze the correlation between tumor heterogeneity and prognosis, as well as chemotherapy response, through single-cell and spatial transcriptomic analysis. We collected and curated 28 HGSOC patients' single-cell transcriptomic data from five datasets. Then, we developed a novel text-mining-based machine-learning approach to deconstruct the evolutionary patterns of tumor cell functions. We then identified key tumor-related genes within different evolutionary branches, characterized the microenvironmental cell compositions that various functional tumor cells depend on, and analyzed the intra- and intertumoral heterogeneity as well as the tumor microenvironments. These analyses were conducted in relation to the prognosis and chemotherapy response in HGSOC patients. We validated our findings in two spatial and seven bulk transcriptomic datasets (total: 1,030 patients). Using transcriptomic clusters as proxies for functional clonality, we identified a significant increase in tumor cell state heterogeneity that was strongly correlated with patient prognosis and treatment response. Furthermore, increased intra- and intertumoral functional clonality was associated with the characteristics of cancer-associated fibroblasts (CAFs). The spatial proximity between CXCL12-positive CAFs and tumor cells, mediated through the CXCL12/CXCR4 interaction, was highly positively correlated with poor prognosis and chemotherapy resistance in HGSOC. Finally, we constructed a panel of 24 genes through statistical modeling that correlate with CXCL12-positive fibroblasts and can predict both prognosis and the response to chemotherapy in HGSOC patients. Our study offers insights into the collective behavior of tumor cell communities in HGSOC, as well as potential drivers of tumor evolution in response to therapy. There was a strong association between CXCL12-positive fibroblasts and tumor progression, as well as treatment outcomes.
Collapse
Affiliation(s)
- Tingjie Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China
| | - Lingxi Tian
- MOE Key Laboratory of Intelligent Biomanufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China
| | - Jun Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China
| | - Cuiyun Zhang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China
| | - Ruitao Long
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofei Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yougai Zhang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China
| | - Bo Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China
| | - Guangbo Tang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jun Yang
- MOE Key Laboratory of Intelligent Biomanufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China.
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People's Republic of China.
| |
Collapse
|
2
|
Wang D, Zhang Y, Li Q, Li Y, Li W, Zhang A, Xu J, Meng J, Tang L, Lyu S. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression. Genes Dis 2024; 11:101020. [PMID: 38988323 PMCID: PMC11233905 DOI: 10.1016/j.gendis.2023.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 07/12/2024] Open
Abstract
Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer. Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression. Nevertheless, the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood. Here, we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs. In addition, we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer. However, there are still some challenges in the field of cancer epigenetics, such as epigenetic tumor heterogeneity, epigenetic drug heterogeneity, and crosstalk between epigenetics, proteomics, metabolomics, and other omics, which may be the focus and difficulty of cancer treatment in the future. In conclusion, epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer. Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuhua Lyu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
3
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
4
|
Cavalluzzi MM, Viale M, Rotondo NP, Ferraro V, Lentini G. Drug Repositioning for Ovarian Cancer Treatment: An Update. Anticancer Agents Med Chem 2024; 24:637-647. [PMID: 38367265 DOI: 10.2174/0118715206282904240122063914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.
Collapse
Affiliation(s)
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Valeria Ferraro
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Schreiber AR, Kagihara JA, Corr BR, Davis SL, Lieu C, Kim SS, Jimeno A, Camidge DR, Williams J, Heim AM, Martin A, DeMattei JA, Holay N, Triplett TA, Eckhardt SG, Litwiler K, Winkler J, Piscopio AD, Diamond JR. First-in-Human Dose-Escalation Study of the Novel Oral Depsipeptide Class I-Targeting HDAC Inhibitor Bocodepsin (OKI-179) in Patients with Advanced Solid Tumors. Cancers (Basel) 2023; 16:91. [PMID: 38201519 PMCID: PMC10778198 DOI: 10.3390/cancers16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients (n = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity. Single-patient escalation cohorts followed a standard 3 + 3 design. (3) Results: The mean duration of treatment was 81.2 (range 11-447) days. The most frequent adverse events in all patients were nausea (70.6%), fatigue (47.1%), and thrombocytopenia (41.2%). The maximum tolerated dose (MTD) of OKI-179 was 450 mg with 4:3 and 200 mg with continuous dosing. Dose-limiting toxicities included decreased platelet count and nausea. Prolonged disease control was observed, including two patients with platinum-resistant ovarian cancer. Systemic exposure to the active metabolite exceeded the preclinical efficacy threshold at doses lower than the MTD and was temporally associated with increased histone acetylation in circulating T cells. (4) Conclusions: OKI-179 has a manageable safety profile at the recommended phase 2 dose (RP2D) of 300 mg daily on a 4:3 schedule with prophylactic oral antiemetics. OKI-179 is currently being investigated with the MEK inhibitor binimetinib in patients with NRAS-mutated melanoma in the phase 2 Nautilus trial.
Collapse
Affiliation(s)
- Anna R. Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Jodi A. Kagihara
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
- Division of Medical Oncology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley R. Corr
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - S. Lindsey Davis
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Sunnie S. Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | | | - Anne Martin
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | - Nisha Holay
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Todd A. Triplett
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | | | | | | | - Jennifer R. Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| |
Collapse
|
6
|
Bitler BG, Bailey CA, Yamamoto TM, McMellen A, Kim H, Watson ZL. Targeting BRPF3 moderately reverses olaparib resistance in high grade serous ovarian carcinoma. Mol Carcinog 2023; 62:1717-1730. [PMID: 37493106 PMCID: PMC10592327 DOI: 10.1002/mc.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
PARP inhibitors (PARPi) kill cancer cells by stalling DNA replication and preventing DNA repair, resulting in a critical accumulation of DNA damage. Resistance to PARPi is a growing clinical problem in the treatment of high grade serous ovarian carcinoma (HGSOC). Acetylation of histone H3 lysine 14 (H3K14ac) and associated histone acetyltransferases (HATs) and epigenetic readers have known functions in DNA repair and replication. Our objectives are to examine their expression and activities in the context of PARPi-resistant HGSOC, and to determine if targeting H3K14ac or associated proteins has therapeutic potential. Using mass spectrometry profiling of histone modifications, we observed increased H3K14ac enrichment in PARPi-resistant HGSOC cells relative to isogenic PARPi-sensitive lines. By reverse-transcriptase quantitative PCR and RNA-seq, we also observed altered expression of numerous HATs in PARPi-resistant HGSOC cells and a PARPi-resistant PDX model. Knockdown of HATs only modestly altered PARPi response, although knockdown and inhibition of PCAF significantly increased resistance. Pharmacologic inhibition of HBO1 depleted H3K14ac but did not affect PARPi response. However, knockdown and inhibition of BRPF3, a bromodomain and PHD-finger containing protein that is known to interact in a complex with HBO1, did reduce PARPi resistance. This study demonstrates that depletion of H3K14ac does not affect PARPi response in HGSOC. Our data suggest that the bromodomain function of HAT proteins, such as PCAF, or accessory proteins, such as BRPF3, may play a more direct role compared to direct HATs function in PARPi response.
Collapse
Affiliation(s)
- Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexandra McMellen
- Section of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Bhattacharya R, Ghosh A, Mukhopadhyay S. High-grade serous ovarian carcinoma, the "Achiles' hill" for clinicians and molecular biologists: a molecular insight. Mol Biol Rep 2023; 50:9511-9519. [PMID: 37737967 DOI: 10.1007/s11033-023-08760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the deadliest ovarian cancer, alone accounts for 90% of all its subtypes. Characterized by hallmark mutation of TP53, HGSOC show diverse molecular etiology. HGSOC can arise from both ovarian epithelium as well as the fimbrial epithelium of the fallopian tube. Ovulation induced reactive oxygen species, follicular fluid associated growth factor induced stemness, deregulation of hormone receptors like ER, FSHR, AR and hormones like FSH, LH, prolonged ovulation cycle, use of oral contraceptives are agonists of HGSOC while parity, breastfeeding provide protective effect from HGSOC development. Apart from a generic TP53 mutation, mutation of BRCA1/2, RAD51, BRIP1, PALB2, CHEK2, RAD50 etc., were reportedly associated with development of HGSOC. Epigenetic events like methylation of RASSF1A of RAS signaling pathway,OR51L1, OR51I1, OR51F1 etc. has been reported in HGSOC. Micro-RNAs like miR-1290, miR 27-a-3p miR23a, miR205 were reportedly upregulated in HGSOC. Amongst its cognate subtypes viz. differentiated, immunoreactive, mesenchymal, and proliferative, mesenchymal, and proliferative show worst prognosis. A system biology approach showed five major altered pathways in HGSOC, namely, RB, PI3K/RAS, NOTCH, HRR and FOXM1 signaling. For chemonaive patients, drugs that helps in efflux of reduced glutathione or prevent the redox coupling of GSH-GSSG, like Cisplatin, could be considered as the best therapeutic choice for HGSOC. For patients with BRCA1/2 mutations, PARP inhibitors alone or with Bevacizumab can be effective. Immune checkpoint inhibitors could be effective against immunoreactive subtypes. Identification of genes deregulated in chemoresistance could provide better insights in dealing with the disease.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Dept of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081, Nayabad, Kolkata, 700094, India.
| | - Arijit Ghosh
- Dept of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081, Nayabad, Kolkata, 700094, India
| | - Soma Mukhopadhyay
- Dept of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081, Nayabad, Kolkata, 700094, India
| |
Collapse
|
8
|
Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina (B Aires) 2023; 59:medicina59030544. [PMID: 36984544 PMCID: PMC10057458 DOI: 10.3390/medicina59030544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients’ poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.
Collapse
|
9
|
Zhu W, Huang M, Thakur A, Yan Y, Wu X. FGF19 promotes cell autophagy and cisplatin chemoresistance by activating MAPK signaling in ovarian cancer. PeerJ 2023; 11:e14827. [PMID: 36751636 PMCID: PMC9899438 DOI: 10.7717/peerj.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background Chemotherapy is one of the primary treatments for ovarian cancer patients. Autophagy has been linked to chemotherapy resistance in tumor cells. Recent studies have suggested that fibroblast growth factor 19 (FGF19) may be involved in the onset and progression of malignancies. However, the relationship between FGF19 and autophagy in ovarian cancer is still unknown. Methods Next-generation sequencing (NGS) was conducted to analyze gene mutation profiles of 62 cases of high grade serous ovarian cancer (HGSOC). Fluorescence in situ hybridization (FISH) was performed to validate the amplification of FGF19 in HGSOC tissues. Quantitative PCR (qPCR) and immunohistochemistry (IHC) were used to analyze the difference of FGF19 in mRNA and protein expression. Meanwhile, bioinformatics techniques were used to analyze the expression profiles of FGF19 and the correlation with prognosis. Besides, immunofluorescence, transmission electron microscopy and Cell Counting Kit 8 (CCK-8) were used to investigate the potential mechanisms. Results In this study, we found that FGF19 promotes cisplatin resistance in ovarian cancer cells by inducing autophagy. NGS analysis of 62 HGSOC cases identified a significantly amplified gene, FGF19. In addition, the expression level of FGF19 in ovarian cancer samples was higher than that in normal samples. FISH results showed a positive correlation between amplification and expression of FGF19. Knockdown of FGF19 inhibited the cell autophagy through decrease in the expression of LC3 and Beclin 1, and increase in the expression of SQSTM1/p62. Furthermore, we observed that p38 MAPK phosphorylation was down-regulated after FGF19 knockdown. IFN-γ, a potential p38 MAPK activator, counteracted the inhibition of cell autophagy and the anti-proliferation effect of cisplatin induced by FGF19 knockdown in ovarian cancer cells. Conclusion FGF19 increases autophagy and chemoresistance in ovarian cancer by activating the p38 MAPK pathway. These results could point to FGF19 being a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Meiyuan Huang
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Elsharkawi SM, Elkaffash D, Moez P, El-Etreby N, Sheta E, Taleb RSZ. PCDH17 gene promoter methylation status in a cohort of Egyptian women with epithelial ovarian cancer. BMC Cancer 2023; 23:89. [PMID: 36698136 PMCID: PMC9878799 DOI: 10.1186/s12885-023-10549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Ovarian cancer is a leading cause of female mortality. Epigenetic changes occur in early stages of carcinogenesis and represent a marker for cancer diagnosis. Protocadherin 17 (PCDH17) is a tumor suppressor gene involved in cell adhesion and apoptosis. The methylation of PCDH17 gene promoter has been described in several cancers including ovarian cancer. The aim of the study was to compare the methylation status of PCDH17 gene promoter between females diagnosed with epithelial ovarian cancer and a control group composed of normal and benign ovarian lesions. METHODS Fifty female subjects were included in our study (25 ovarian cancer patients and 25 controls). DNA was extracted from Formalin-Fixed Paraffin-Embedded (FFPE) tissues of the subjects. Methylation levels for six CpG sites in the PCDH17 gene promoter were assessed by pyrosequencing. RESULTS The methylation levels at five out of six sites were significantly higher in females with epithelial ovarian cancer compared to the control group. Moreover, the same applies for the mean methylation level with p value 0.018. CONCLUSION Methylation of PCDH17 gene promoter plays a role in ovarian carcinogenesis and can be used for diagnosis and early detection.
Collapse
Affiliation(s)
- Sherif Mohamed Elsharkawi
- grid.7155.60000 0001 2260 6941Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalal Elkaffash
- grid.7155.60000 0001 2260 6941Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Pacint Moez
- grid.7155.60000 0001 2260 6941Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nour El-Etreby
- grid.7155.60000 0001 2260 6941Department of Obstetrics and Gynecology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- grid.7155.60000 0001 2260 6941Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Raghda Saad Zaghloul Taleb
- grid.7155.60000 0001 2260 6941Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
12
|
Guo F, Wang H. Potential of histone deacetylase inhibitors for the therapy of ovarian cancer. Front Oncol 2022; 12:1057186. [PMID: 36505774 PMCID: PMC9732372 DOI: 10.3389/fonc.2022.1057186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemotherapy increase patient mortality. Accumulating evidence demonstrates that histone modifications play a key role in cancerization and progression. Histone deacetylases is associated with chromatin condensed structure and transcriptional repression and play a role in chromatin remodeling and epigenetics. Histone deacetylases are promising targets for therapeutic interventions intended to reverse aberrant epigenetic associated with cancer. Therefore, histone deacetylases inhibitors could be used as anti-cancer drugs. Preclinical studies have shown promising outcomes of histone deacetylases inhibitors in ovarian cancer while clinical trials have had mixed results and limited success as monotherapy. Therefore, combination therapy with different anticancer drugs for synergistic effects and newly selective histone deacetylases inhibitors development for lower toxicity are hot issues now. In this review, we summarize the latest studies on the classification and mechanisms of action of histone deacetylase and the clinical application of their inhibitors as monotherapy or combination therapy in ovarian cancer.
Collapse
Affiliation(s)
- Fengyi Guo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongjing Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China,*Correspondence: Hongjing Wang,
| |
Collapse
|
13
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
14
|
Xu Z, Zhang L, Wang M, Huang Y, Zhang M, Li S, Wang L, Li K, Hou Y. A novel subtype to predict prognosis and treatment response with DNA driver methylation-transcription in ovarian cancer. Epigenomics 2022; 14:1073-1088. [PMID: 36200265 DOI: 10.2217/epi-2022-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To identify a novel subtype with DNA driver methylation-transcriptomic multiomics and predict prognosis and therapy response in serous ovarian cancer (SOC). Methods: SOC cohorts with both mRNA and methylation were collected, and DNA driver methylation (DNAme) was identified with the MithSig method. A novel prognostic subtype was developed by integrating the information on DNAme and prognosis-regulated DNAme-associated mRNA by similarity network fusion. Results: 43 overlapped DNAme were identified in three independent cohorts. SOC patients were categorized into three distinct subtypes by integrated multiomics. There were differences in prognosis, tumor microenvironment and response to therapy among the subtypes. Conclusion: This study identified 43 DNAmes and proposes a novel subtype toward personalized chemotherapy and immunotherapy for SOC patients based on multiomics.
Collapse
Affiliation(s)
- Zhenyi Xu
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Liuchao Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Meng Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yue Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Min Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Shuang Li
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Liuying Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Kang Li
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yan Hou
- Department of Biostatistics, Peking University, Beijing, 100000, China
| |
Collapse
|
15
|
Guo L, Xu N, Qiu D, Yang X, Zhao S, Zhao H. Comprehensive analysis of m6A-modified circRNAs in peritoneal metastasis of high grade serious carcinoma of ovary. Front Oncol 2022; 12:988578. [PMID: 36203450 PMCID: PMC9530810 DOI: 10.3389/fonc.2022.988578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose High-grade serous ovarian cancer (HGSOC) remains the most lethal female cancer due to metastasis. CircRNAs are recently identified to be modified by N6-methyladenosine (m6A) in many cells. However, the significance of m6A-modified circular RNAs (circRNAs) has not been elucidated in HGSOC peritoneal metastasis. Here, we aimed to investigate the participation and potential functions of m6A-modified circRNAs in HGSCO peritoneal metastasis. Methods Cancerous tissues were collected from the in situ and the peritoneal metastasis lesions of HGSCO patients. M6A-tagged circRNAs were identified by m6A-modified RNA immunoprecipitation sequencing (m6A-RIP-seq). Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the potential functions of the m6A-modified circRNAs. Results For the m6A-modified circRNAs, 259 were upregulated and 227 were downregulated in the peritoneal metastasis than in the situ lesions of HGSCO patients. For the m6A peaks, 1541 were upregulated and 1293 were downregulated in the peritoneal metastasis than in the in situ lesions of HGSCO patients. For the differential expressed circRNAs, 1911(19.6%) were upregulated and 2883(29.6%) were downregulated in the peritoneal metastasis than in the in situ lesions of HGSCO patients. The upregulated m6A-modified circRNAs were associated with the HIF-1 signaling. The downregulated m6A-modified circRNAs were associated with the MAPK signaling. Conclusions This work firstly identified the transcriptome-wide map of m6A-modified circRNAs in peritoneal metastasis of HGSCO. Our findings provided novel evidences about the participation of m6A-modified circRNAs via HIF-1 and MAPK signaling and a new insight in molecular target of HGSCO peritoneal metastasis.
Collapse
|
16
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|