1
|
Cai K, Cao XY, Chen F, Zhu Y, Sun DD, Cheng HB, Duan JA, Su SL. Xianlian Jiedu Decoction alleviates colorectal cancer by regulating metabolic profiles, intestinal microbiota and metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155385. [PMID: 38569292 DOI: 10.1016/j.phymed.2024.155385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of β-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.
Collapse
Affiliation(s)
- Ke Cai
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xin-Yue Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fan Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Dong-Dong Sun
- The First Clinical Medical College of Nanjing University of Chinese Medicine Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hai-Bo Cheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu-Lan Su
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Zhang J, Guo J, He R, Li J, Du B, Zhang Y, He R, Cheng H. Analysis of the differential expression of serum miR-21-5p, miR-135-5p, and miR-155-5p by Bifidobacterium triplex viable capsules during the perioperative stage of colorectal cancer. Int J Colorectal Dis 2024; 39:48. [PMID: 38584226 PMCID: PMC10999390 DOI: 10.1007/s00384-024-04617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE In this study, we investigated the impact of perioperative administration of Bifidobacterium triplex viable capsules on the serum levels of circulating miR-21-5p, miR-135-5p, and miR-155-5p in patients with colorectal cancer (CRC). The purpose of this study is to provide a foundation for future research on the use of Bifidobacterium triplex viable capsules to enhance postoperative recovery in patients with CRC. METHODS A total of 60 patients with primary CRC admitted to the Department of General Surgery at Shanxi Bethune Hospital between June 2020 and December 2020 were selected and randomly divided into two groups: 20 cases in the control group and 40 cases in the experimental group. The experimental group was administered oral Bifidobacterium triplex viable capsules during the perioperative period, while the control group was administered oral placebo. Before and after the perioperative period, the expression levels of miR-21-5p, miR-135-5p, and miR-155-5p were compared in the serum of both groups of patients. Furthermore, we established the prognostic value of these three miRNAs in CRC patients. RESULTS After surgery, the expression levels of miR-21-5p, miR-135-5p, and miR-155-5p decreased in both groups of patients (P < 0.05). Significantly greater differences were observed between miR-21-5p and miR-135-5p (P < 0.001). Expression levels of serum miR-21-5p (P = 0.020) and miR-135-5p (P = 0.023) decreased significantly more in the experimental group than in the control group. The levels of the above three miRNAs after surgery did not correlate with 3-year OS (HR = 4.21; 95% CI 0.37-47.48; log-rank P = 0.20) or 3-year DFS (HR = 1.57; 95% CI 0.32-7.66; log-rank P = 0.55) in two groups. CONCLUSION Radical surgery reduces the levels of serum miR-21-5p, miR-135-5p, and miR-155-5p expression in patients with CRC. The use of Bifidobacterium triplex viable capsules assists in achieving quicker perioperative recovery from radical surgery in CRC patients, and this underlying mechanism may be associated with the regulation of serum miR-21-5p, miR-135-5p, and miR-155-5p expression levels.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Ji Guo
- Second Department of General Surgery, Shanxi Provincial Integrated TCM And WM Hospital, Taiyuan, 030013, China
| | - Ruochong He
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Ji Li
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Bingyi Du
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Yi Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Rongliang He
- Department of General Surgery, Xiaoyi People's Hospital of Shanxi Province, Luliang, 032300, China
| | - Haixia Cheng
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Pantalone MR, Almazan NM, Lattanzio R, Taher C, De Fabritiis S, Valentinuzzi S, Bishehsari F, Mahdavinia M, Verginelli F, Rahbar A, Mariani-Costantini R, Söderberg-Naucler C. Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer. Int J Oncol 2023; 63:116. [PMID: 37654195 PMCID: PMC10546380 DOI: 10.3892/ijo.2023.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro‑inflammatory enzymes 5‑lipoxygenase (5‑LO) and cyclooxygenase‑2 (COX‑2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin‑embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki‑67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5‑LO and COX‑2. The CRC cell lines Caco‑2 and LS‑174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti‑inflammatory drug celecoxib (CCX) and analyzed by reverse transcription‑quantitative PCR and immunofluorescence for 5‑LO, COX‑2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX‑2, 5‑LO and KI‑67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5‑LO and COX‑2 transcript and proteins in both Caco‑2 and LS‑174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX‑2, 5‑LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.
Collapse
Affiliation(s)
- Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Nerea Martin Almazan
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Laboratory Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Chato Taher
- Department of Basic Sciences, Hawler Medical University, Erbil 44001, Iraq
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
| | - Mahboobeh Mahdavinia
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
- Department of Internal Medicine, Division of Allergy and Immunology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabio Verginelli
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Fujimoto H, Fukuzato S, Kanno K, Akutsu T, Ohdaira H, Suzuki Y, Urashima M. Reduced Relapse-Free Survival in Colorectal Cancer Patients with Elevated Soluble CD40 Ligand Levels Improved by Vitamin D Supplementation. Nutrients 2023; 15:4361. [PMID: 37892436 PMCID: PMC10609672 DOI: 10.3390/nu15204361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Although elevated serum levels of soluble CD40 ligand (sCD40L) were reported in patients with cancer, the importance of high sCD40L levels in clinical oncology remains unknown. We conducted a post hoc analysis of the AMATERASU randomized clinical trial of vitamin D3 supplementation (2000 IU/day) in patients with digestive tract cancer to assess its significance. Serum sCD40L levels were measured by ELISA in 294 residual samples, and were divided into tertiles. In patients with colorectal cancer (CRC), 5-year relapse-free survival (RFS) rates in the middle and highest tertiles were 61.6% and 61.2%, respectively, which was significantly lower than 83.8% in the lowest tertile. A Cox proportional hazard analysis showed that the lowest tertile had a significantly lower risk of relapse or death than the highest tertile even with multivariate adjustment (hazard ratio (HR), 0.30; 95% confidence interval (CI), 0.11-0.80; p = 0.016). In the subgroup of CRC patients with the highest tertile of sCD40L, the 5-year RFS rate in the vitamin D group was 77.9%, which was significantly higher than 33.2% in the placebo group (HR, 0.30; 95% CI, 0.11-0.81; p = 0.018 [Pinteraction = 0.04]). In conclusion, elevated sCD40L might be a biomarker of poor prognosis in patients with CRC, but vitamin D supplementation might improve RFS in patients with high sCD40L.
Collapse
Affiliation(s)
- Hiroshi Fujimoto
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
- Biometrics and Data Sciences, Bristol-Myers Squibb K.K., 1-2-1 Otemachi Chiyoda-ku, Tokyo 100-0004, Japan
| | - Soichiro Fukuzato
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| | - Kazuki Kanno
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| | - Taisuke Akutsu
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| | - Hironori Ohdaira
- Department of Surgery, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara 329-2763, Japan; (H.O.); (Y.S.)
| | - Yutaka Suzuki
- Department of Surgery, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara 329-2763, Japan; (H.O.); (Y.S.)
| | - Mitsuyoshi Urashima
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| |
Collapse
|
5
|
Linder M, Liko D, Kancherla V, Piscuoglio S, Hall MN. Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells. Biomedicines 2023; 11:2158. [PMID: 37626656 PMCID: PMC10452693 DOI: 10.3390/biomedicines11082158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Protein histidine phosphorylation (pHis) is a posttranslational modification involved in cell cycle regulation, ion channel activity and phagocytosis. Using novel monoclonal antibodies to detect pHis, we previously reported that the loss of the histidine phosphatase LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) results in elevated pHis levels in hepatocellular carcinoma. Here, we show that intestinal inflammation correlates with the loss of LHPP in dextran sulfate sodium (DSS)-treated mice and in inflammatory bowel disease (IBD) patients. Increased histidine phosphorylation was observed in intestinal epithelial cells (IECs), as determined by pHis immunofluorescence staining of colon samples from a colitis mouse model. However, the ablation of Lhpp did not cause increased pHis or promote intestinal inflammation under physiological conditions or after DSS treatment. Our observations suggest that increased histidine phosphorylation plays a role in colitis, but the loss of LHPP is not sufficient to increase pHis or to cause inflammation in the intestine.
Collapse
Affiliation(s)
- Markus Linder
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dritan Liko
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | |
Collapse
|
6
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Prognostic Value of Combined Hematological/Biochemical Indexes and Tumor Clinicopathologic Features in Colorectal Cancer Patients—A Pilot Single Center Study. Cancers (Basel) 2023; 15:cancers15061761. [PMID: 36980648 PMCID: PMC10046459 DOI: 10.3390/cancers15061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Colorectal cancer (CRC) is a significant public health problem. There is increasing evidence that the host’s immune response and nutritional status play a role in the development and progression of cancer. The aim of our study was to examine the prognostic value of clinical markers/indexes of inflammation, nutritional and pathohistological status in relation to overall survival and disease free-survival in CRC. The total number of CRC patients included in the study was 111 and they underwent laboratory analyses within a week before surgery. Detailed pathohistological analysis and laboratory parameters were part of the standard hospital pre-operative procedure. Medical data were collected from archived hospital data. Data on the exact date of death were obtained by inspecting the death registers for the territory of the Republic of Serbia. All parameters were analyzed in relation to the overall survival and survival period without disease relapse. The follow-up median was 42 (24−48) months. The patients with the III, IV and V degrees of the Clavien–Dindo classification had 2.609 (HR: 2.609; 95% CI: 1.437−4.737; p = 0.002) times higher risk of death. The modified Glasgow prognostic score (mGPS) 2 and higher lymph node ratio carried a 2.188 (HR: 2.188; 95% CI: 1.413−3.387; p < 0.001) and 6.862 (HR: 6.862; 95% CI: 1.635−28.808; p = 0.009) times higher risk of death in the postoperative period, respectively; the risk was 3.089 times higher (HR: 3.089; 95% CI: 1.447−6.593; p = 0.004) in patients with verified tumor deposits. The patients with tumor deposits had 1.888 (HR: 1.888; 95% CI: 1024−3481; p = 0.042) and 3.049 (HR: 3.049; 95% CI: 1.206−7.706; p = 0.018) times higher risk of disease recurrence, respectively. The emphasized peritumoral lymphocyte response reduced the risk of recurrence by 61% (HR: 0.391; 95% CI: 0.196−0.780; p = 0.005). Standard perioperative laboratory and pathohistological parameters, which do not present any additional cost for the health system, may provide information on the CRC patient outcome and lay the groundwork for a larger prospective examination.
Collapse
|
8
|
The Cytokine Network in Colorectal Cancer: Implications for New Treatment Strategies. Cells 2022; 12:cells12010138. [PMID: 36611932 PMCID: PMC9818504 DOI: 10.3390/cells12010138] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.
Collapse
|
9
|
The Effect of Low Doses of Acetylsalicylic Acid on the Occurrence of Rectal Aberrant Crypt Foci. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121767. [PMID: 36556972 PMCID: PMC9788241 DOI: 10.3390/medicina58121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Background and Objectives: Aberrant crypt foci (ACF) are one of the earliest putative preneoplastic and, in some cases, neoplastic lesions in human colons. Many studies have confirmed the reduction of ACFs and colorectal adenomas after treatment with acetylsalicylic acid (ASA) commonly referred to as ASA; however, the minimum effective dose of ASA and the duration of use has not been fully elucidated. The objective of our study was to assess the significance of low dose ASA (75-mg internally once daily) to study the chemopreventive effect of ASA in ACF and adenomas development in patients taking this drug for a minimum period of 10 years. Materials and Methods: Colonoscopy, combined with rectal mucosa staining with 0.25% methylene blue, was performed on 131 patients. The number of rectal ACF in the colon was divided into three groups: ACF < 5; ACF 5−10; and ACF > 10. Patients were divided into two groups: the “With ASA” group (the study group subjects taking ASA 75-mg daily for 10 years); and “Without ASA” group (control group subjects not taking ASA chronically). The incidence of different types of rectal ACF and colorectal polyps in both groups of subjects was analysed and ascertained. Results: Normal ACF was found in 12.3% in the study group vs. 87.7% control group, hyperplastic 22.4% vs. 77.6%, dysplastic 25% vs. 75%, mixed 0% vs. 100%. Treatment with ASA affects the occurrence of colorectal adenomas. The amount of dysplastic ACFs was lower in the study group than in the control group. The increase in dysplastic ACFs decreases with age in both groups, with the increase greater in those not taking ASA. Conclusions: Patients who take persistent, chronic (>10 years) low doses of ASA have a lower total number of all types of rectal ACFs and adenomas compared to the control group.
Collapse
|
10
|
Xiao Y, Yang J, Yang M, Len J, Yu Y. The prognosis of bladder cancer is affected by fatty acid metabolism, inflammation, and hypoxia. Front Oncol 2022; 12:916850. [DOI: 10.3389/fonc.2022.916850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BackgroundThe prognosis of bladder cancer (BC) is poor, and there is no effective personalized management method for BC patients at present. Developing an accurate model is helpful to make treatment plan and prognosis analysis for BC patients. Endogenous fatty acid metabolism causes cancer cells to become hypoxic, and the coexistence of hypoxia and inflammation is often characteristic of cancer. All three together influence the tumor immune microenvironment, treatment, and prognosis of BC.MethodsWe used The Cancer Genome Atlas-Bladder Urothelial Carcinoma (TCGA-BLAC) cohorts as a train group to build a risk model based on fatty acid metabolism, hypoxia and inflammation-related gene signatures and performed external validation with GSE13507, GSE31684, and GSE39281 cohorts. We validated the model to correlate with the clinicopathological characteristics of patients, created an accuracy nomogram, and explored the differences in immune microenvironment and enrichment pathways.ResultsWe found significant differences in overall survival and progression-free survival between high- and low-risk groups, and patients in the low-risk group had a better prognosis than those in the high-risk group. In the train group, the AUCs for predicting overall survival at 1, 3, and 5 years were 0.745, 0.712, and 0.729, respectively. The 1-, 3-, and 5-year overall survival AUCs were 0.589, 0.672, and 0.666 in the external validation group, respectively. The risk score independently predicted the prognosis of BC patients with AUCs of 0.729. In addition, there was a significant correlation between risk scores and BC clinicopathological features and, in the GSE13507 cohort, we observed that BC progression and deeper invasion were associated with higher risk scores. Risk scores were highly correlated with coproptosis, pyroptosis, m7G, immune checkpoint-related genes, and immune microenvironment. In addition, we found that patients in the low-risk group responded better to immunotherapy, whereas patients in the high-risk group were more sensitive to commonly used chemotherapy drugs.ConclusionOur findings provide new treatment decisions for BC, and can effectively predict the prognosis of BC patients, which is helpful for the management of BC patients.
Collapse
|
11
|
Li X, Xin S, Zheng X, Lou L, Ye S, Li S, Wu Q, Ding Q, Ji L, Nan C, Lou Y. Inhibition of the Occurrence and Development of Inflammation-Related Colorectal Cancer by Fucoidan Extracted from Sargassum fusiforme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9463-9476. [PMID: 35858119 PMCID: PMC9354242 DOI: 10.1021/acs.jafc.2c02357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 05/14/2023]
Abstract
Fucoidan has many biological activities, including the inhibitory effect on the development of various cancer types. This study showed that lipopolysaccharide-induced inflammation in FHC cells (normal human colonic epithelial cells) could be reversed using fucoidan at different concentrations. The fucoidan-induced anti-inflammatory effect was also confirmed through in vivo experiments in mice. Compared to the mice of the model group, the ratio of Firmicutes/Bacteroidetes in feces increased and the diversity of gut microbial composition was restored in mice after fucoidan intervention. In colorectal cancer (CRC) cells DLD-1 and SW480, fucoidan inhibited cell proliferation and promoted cell apoptosis. It also blocked the cell cycle of DLD-1 and SW480 at the G0/G1 phase. The animal model of inflammation-related CRC showed that the incidence of tumors in mice was significantly reduced by fucoidan intervention. Furthermore, the administration of fucoidan decreased the expression levels of inflammatory factors such as TNF-α IL-6 and IL-1β in the colonic tissues. Therefore, fucoidan can effectively prevent the development of colitis-associated CRC.
Collapse
Affiliation(s)
- Xiang Li
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Shijun Xin
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Xiaoqun Zheng
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Liqin Lou
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Shiqing Ye
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Shengkai Li
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Qilong Wu
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Qingyong Ding
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Ling Ji
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
- The
First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chunrong Nan
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yongliang Lou
- Wenzhou
Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory
Medicine, Ministry of Education, China, School of Laboratory Medicine
and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Colorectal
Cancer Research Center, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
12
|
Creation and Validation of a Survival Nomogram Based on Immune-Nutritional Indexes for Colorectal Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:1854812. [PMID: 35368901 PMCID: PMC8975631 DOI: 10.1155/2022/1854812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
Nutritional and inflammatory status was associated with prognosis in various types of malignant cancer, including colorectal cancer (CRC). This clinical research was performed to estimate the prognostic role of immune-nutritional indexes CRC in patients and to set up a survival nomogram based on the significant immune-nutritional indexes. 1024 CRC patients underwent surgical resection from Wuhan Union Hospital were enrolled and divided into the test cohort (n = 717) and validation cohort (n = 307). A total of 19 immune-nutritional indexes were included into our analysis. The Cox regression analysis was utilized to identify the informative immune-nutritional indexes which were closely associated with overall survival (OS) and disease-free survival (DFS). Survival nomograms were created in the test set and further verified in the validation set. Td-ROC was curved to estimate the predictive performance of survival nomograms for CRC patients. Body mass index (BMI), chemotherapy, TNM stage, T stage, lactate dehydrogenase (LDH)/prealbumin (PA), monocytes (MON)/albumin (ALB), and prognostic nutritional index (PNI) were seven potent prognostic biomarkers of CRC patients. We created an OS-nomogram based on the seven risk indexes, and the predictive accuracy expressed with area under curve (AUC) was 0.826 for 1-year, 0.809 for 3-year, and 0.80 for 5-year OS rates in the test set and 0.795 for 1-year, 0.749 for 3-year, and 0.647 for 5-year OS rates in the validation set. TNM stage, T stage, LDH/ALB, and MON/ALB were risk factors for unfavorable DFS in CRC patients. We further built a DFS-nomogram based on the four risk factors, and the predictive performance presented with AUC was 0.806 for 1-year, 0.763 for 3-year, and 0.82 for 5-year DFS rates in the test set, and 0.704 for 1-year, 0.692 for 3-year, and 0.692 for 5-year DFS rates in the validation set. Our survival nomogram based on immune-nutritional indexes is a useful and potential prognostic tool in CRC patients.
Collapse
|