1
|
Komal, Nanda BP, Singh L, Bhatia R, Singh A. Paclitaxel in colon cancer management: from conventional chemotherapy to advanced nanocarrier delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9449-9474. [PMID: 38990305 DOI: 10.1007/s00210-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.
Collapse
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Zhu Z, Zhang W, Huo S, Huang T, Cao X, Zhang Y. TUBB, a robust biomarker with satisfying abilities in diagnosis, prognosis, and immune regulation via a comprehensive pan-cancer analysis. Front Mol Biosci 2024; 11:1365655. [PMID: 38756529 PMCID: PMC11096532 DOI: 10.3389/fmolb.2024.1365655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose TUBB can encode a beta-tubulin protein. At present, the role of TUBB has not been ascertained in cancers. Hence, the importance of further systematic pan-cancer analyses is stressed to explore its value in the diagnosis, prognosis, and immune function of cancers. Methods By collecting and handling integrative data from the TCGA, Firehose, UCSC Xena, cBioPortal, GEO, CPTAC, TIMER2.0, TISCH, CellMiner, GDSC, and CTRP databases, we explored the potential diagnostic and prognostic roles of TUBB in pan-cancers from multiple angles. Moreover, the GSEA analysis was conducted to excavate the biological functions of TUBB in pan-cancers. In addition, survival profiles were described, and the differential expressions of TUBB in different molecular subtypes were discussed. Also, we utilized the cMAP function to search drugs or micro-molecules that have an impact on TUBB expressions. Results Based on the TCGA data, we found that TUBB was differentially expressed in a variety of tumors and showed an early-diagnostic value. Mutations, somatic copy number alterations, and DNA methylation would lead to its abnormal expression. TUBB expressions had relations with many clinical features. What's more, TUBB expressions were validated to be related to many metabolism-related, metastasis-related, and immune-related pathways. High TUBB expressions were proved to have a great impact on the prognosis of various types of cancers and would affect the sensitivity of some drugs. We also demonstrated that the expression of TUBB was significantly correlated to immunoregulator molecules and biomarkers of lymphocyte subpopulation infiltration. Conclusion TUBB and its regulatory genes were systemically analyzed in this study, showing that TUBB had satisfying performances in disease diagnosing and prognosis predicting of multiple cancers. It could remodel the tumor microenvironment and play an integral role in guiding cancer therapies and forecasting responses to chemotherapy.
Collapse
Affiliation(s)
- Zaifu Zhu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shaohu Huo
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tiantuo Huang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xi Cao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Ying Zhang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Pathology Center, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Danziger M, Noble H, Roque DM, Xu F, Rao GG, Santin AD. Microtubule-Targeting Agents: Disruption of the Cellular Cytoskeleton as a Backbone of Ovarian Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:1-19. [PMID: 38805122 DOI: 10.1007/978-3-031-58311-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Microtubules are dynamic polymers composed of α- and β-tubulin heterodimers. Microtubules are universally conserved among eukaryotes and participate in nearly every cellular process, including intracellular trafficking, replication, polarity, cytoskeletal shape, and motility. Due to their fundamental role in mitosis, they represent a classic target of anti-cancer therapy. Microtubule-stabilizing agents currently constitute a component of the most effective regimens for ovarian cancer therapy in both primary and recurrent settings. Unfortunately, the development of resistance continues to present a therapeutic challenge. An understanding of the underlying mechanisms of resistance to microtubule-active agents may facilitate the development of novel and improved approaches to this disease.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam G Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
4
|
Schatten H. The Impact of Centrosome Pathologies on Ovarian Cancer Development and Progression with a Focus on Centrosomes as Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:37-64. [PMID: 38805124 DOI: 10.1007/978-3-031-58311-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.
Collapse
Affiliation(s)
- Heide Schatten
- University of Missouri-Columbia Department of Veterinary Pathobiology, Columbia, MO, USA.
| |
Collapse
|
5
|
Li X, Liu H, Wang F, Yuan J, Guan W, Xu G. Prediction Model for Therapeutic Responses in Ovarian Cancer Patients using Paclitaxel-resistant Immune-related lncRNAs. Curr Med Chem 2024; 31:4213-4231. [PMID: 38357948 PMCID: PMC11340295 DOI: 10.2174/0109298673281438231217151129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the deadliest malignant tumor in women with a poor prognosis due to drug resistance and lack of prediction tools for therapeutic responses to anti- cancer drugs. OBJECTIVE The objective of this study was to launch a prediction model for therapeutic responses in OC patients. METHODS The RNA-seq technique was used to identify differentially expressed paclitaxel (PTX)- resistant lncRNAs (DE-lncRNAs). The Cancer Genome Atlas (TCGA)-OV and ImmPort database were used to obtain immune-related lncRNAs (ir-lncRNAs). Univariate, multivariate, and LASSO Cox regression analyses were performed to construct the prediction model. Kaplan- meier plotter, Principal Component Analysis (PCA), nomogram, immune function analysis, and therapeutic response were applied with Genomics of Drug Sensitivity in Cancer (GDSC), CIBERSORT, and TCGA databases. The biological functions were evaluated in the CCLE database and OC cells. RESULTS The RNA-seq defined 186 DE-lncRNAs between PTX-resistant A2780-PTX and PTXsensitive A2780 cells. Through the analysis of the TCGA-OV database, 225 ir-lncRNAs were identified. Analyzing 186 DE-lncRNAs and 225 ir-lncRNAs using univariate, multivariate, and LASSO Cox regression analyses, 9 PTX-resistant immune-related lncRNAs (DEir-lncRNAs) acted as biomarkers were discovered as potential biomarkers in the prediction model. Single-cell RNA sequencing (scRNA-seq) data of OC confirmed the relevance of DEir-lncRNAs in immune responsiveness. Patients with a low prediction score had a promising prognosis, whereas patients with a high prediction score were more prone to evade immunotherapy and chemotherapy and had poor prognosis. CONCLUSION The novel prediction model with 9 DEir-lncRNAs is a valuable tool for predicting immunotherapeutic and chemotherapeutic responses and prognosis of patients with OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| |
Collapse
|
6
|
Hammad ASA, Sayed-Ahmed MM, Abdel Hafez SMN, Ibrahim ARN, Khalifa MMA, El-Daly M. Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NFκB and klotho protein expression. Chem Biol Interact 2023; 376:110446. [PMID: 36898573 DOI: 10.1016/j.cbi.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a common adverse effect associated with a number of chemotherapeutic agents including paclitaxel (PTX) which is commonly used in a wide range of solid tumors. Development of PTX-induced peripheral neuropathy (PIPN) during cancer treatment requires dose reduction which limits its clinical benefits. This study is conducted to investigate the role of toll like receptor-4 (TLR4) and p38 signaling and Klotho protein expression in PIPN and the role of Trimetazidine (TMZ) in this pathway. Sixty-four male Swiss albino mice were divided into 4 groups (n = 16); Group (1) injected intraperitoneally (IP) with ethanol/tween 80/saline for 8 successive days. Group (2) received TMZ (5 mg/kg, IP, day) for 8 successive days. Group (3) treated with 4 doses of PTX (4.5 mg/kg, IP) every other day over a period of 8 days. Group (4) received a combination of TMZ as group 2 and PTX as group 3. The Effect of TMZ on the antitumor activity of PTX was studied in another set of mice-bearing Solid Ehrlich Carcinoma (SEC) that was similarly divided as the above-mentioned set. TMZ mitigated tactile allodynia, thermal hypoalgesia, numbness and fine motor dyscoordination associated with PTX in Swiss mice. The results of the current study show that the neuroprotective effect of TMZ can be attributed to inhibition of TLR4/p38 signaling which also includes a reduction in matrix metalloproteinase-9 (MMP9) protein levels as well as the proinflammatory interleukin-1β (IL-1β) and preserving the levels of the anti-inflammatory IL-10. Moreover, the current study is the first to demonstrate that PTX reduces the neuronal levels of klotho protein and showed its modulation via cotreatment with TMZ. In addition, this study showed that TMZ neither alter the growth of SEC nor the antitumor activity of PTX. In conclusion, we suggest that (1) Inhibition of Klotho protein and upregulation of TLR4/p38 signals in nerve tissues may contribute to PIPN. (2) TMZ attenuates PIPN by modulating TLR4/p38 and Klotho protein expression in without interfering with its antitumor activity.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Sara M N Abdel Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Ahmed R N Ibrahim
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| |
Collapse
|
7
|
Shin YB, Choi JY, Shin DH, Lee JW. Anticancer Evaluation of Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles Encapsulating Fenbendazole and Rapamycin in Ovarian Cancer. Int J Nanomedicine 2023; 18:2209-2223. [PMID: 37152471 PMCID: PMC10162106 DOI: 10.2147/ijn.s394712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose We aimed to inhibit ovarian cancer (OC) development by interfering with microtubule polymerization and inhibiting mTOR signaling. To achieve this, previously developed micelles containing fenbendazole and rapamycin were applied. Methods Herein, we prepared micelles for drug delivery using fenbendazole and rapamycin at a 1:2 molar ratio and methoxy poly(ethylene glycol)-b-poly(caprolactone)(mPEG-b-PCL) via freeze-drying. We revealed their long-term storage capacity of up to 120 days. Furthermore, a cytotoxicity test was performed on the OC cell line HeyA8, and an orthotopic model was established for evaluating in vivo antitumor efficacy. Results Fenbendazole/rapamycin-loaded mPEG-b-PCL micelle (M-FR) had an average particle size of 37.2 ± 1.10 nm, a zeta potential of -0.07 ± 0.09 mV, and a polydispersity index of 0.20 ± 0.02. Additionally, the average encapsulation efficiency of fenbendazole was 75.7 ± 4.61% and that of rapamycin was 98.0 ± 1.97%. In the clonogenic assay, M-FR was 6.9 times more effective than that free fenbendazole/rapamycin. The in vitro drug release profile showed slower release in the combination formulation than in the single formulation. Conclusion There was no toxicity, and tumor growth was suppressed substantially by our formulation compared with that seen with the control. The findings of our study lay a foundation for using fenbendazole and rapamycin for OC treatment.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Correspondence: Dae Hwan Shin, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea, Tel +82 43 261 2820, Fax +82 43 268 2732, Email
| | - Jeong-Won Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Jeong-Won Lee, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea, Tel +82-2-3410-1382, Fax +82-2-3410-0630, Email
| |
Collapse
|
8
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
9
|
Foroutan A, Corazzari M, Grolla AA, Colombo G, Travelli C, Genazzani AA, Theeramunkong S, Galli U, Tron GC. Identification of novel aza-analogs of TN-16 as disrupters of microtubule dynamics through a multicomponent reaction. Eur J Med Chem 2022; 245:114895. [DOI: 10.1016/j.ejmech.2022.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
10
|
Bora D, Sharma A, John SE, Shankaraiah N. Development of hydrazide hydrazone-tethered combretastatin-oxindole derivatives as antimitotic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ovejero-Sánchez M, Asensio-Juárez G, González M, Puebla P, Vicente-Manzanares M, Pélaez R, González-Sarmiento R, Herrero AB. Panobinostat Synergistically Enhances the Cytotoxicity of Microtubule Destabilizing Drugs in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:13019. [PMID: 36361809 PMCID: PMC9657298 DOI: 10.3390/ijms232113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Gloria Asensio-Juárez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Myriam González
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Puebla
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Rafael Pélaez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Ritter A, Kreis NN. Microtubule Dynamics and Cancer. Cancers (Basel) 2022; 14:cancers14184368. [PMID: 36139529 PMCID: PMC9497089 DOI: 10.3390/cancers14184368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022] Open
|
13
|
Zhang X, Wang J, Fan Y, Zhao Z, Paraghamian SE, Hawkins GM, Buckingham L, O'Donnell J, Hao T, Suo H, Yin Y, Sun W, Kong W, Sun D, Zhao L, Zhou C, Bae-Jump VL. Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel-sensitive and -resistant ovarian cancer cells. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04276-8. [PMID: 36006482 DOI: 10.1007/s00432-022-04276-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Although paclitaxel is a promising first-line chemotherapeutic drug for ovarian cancer, acquired resistance to paclitaxel is one of the leading causes of treatment failure, limiting its clinical application. Asparagus officinalis has been shown to have anti-tumorigenic effects on cell growth, apoptosis, cellular stress and invasion of various types of cancer cells and has also been shown to synergize with paclitaxel to inhibit cell proliferation in ovarian cancer. METHODS Human ovarian cancer cell lines MES and its PTX-resistant counterpart MES-TP cell lines were used and were treated with Asparagus officinalis and paclitaxel alone as well as in combination. Cell proliferation, cellular stress, invasion and DMA damage were investigated and the synergistic effect of a combined therapy analyzed. RESULTS In this study, we found that Asparagus officinalis combined with low-dose paclitaxel synergistically inhibited cell proliferation, induced cellular stress and apoptosis and reduced cell invasion in paclitaxel-sensitive and -resistant ovarian cancer cell lines. The combined treatment effects were dependent on DNA damage pathways and suppressing microtubule dynamics, and the AKT/mTOR pathway and microtubule-associated proteins regulated the inhibitory effect through different mechanisms in paclitaxel-sensitive and -resistant cells. CONCLUSION These findings suggest that the combination of Asparagus officinalis and paclitaxel have potential clinical implications for development as a novel ovarian cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Sarah E Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Gabrielle M Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Lindsey Buckingham
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jillian O'Donnell
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Hongyan Suo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Delin Sun
- Shandong Juxinyuan Asparagus Industry Development Research Institute, HeZe, 274400, Shandong, People's Republic of China
| | - Luyu Zhao
- Shandong Juxinyuan Agricultural Technology Co. LTD, HeZe, 274400, Shandong, People's Republic of China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Zhang C, Liu N. Noncoding RNAs in the Glycolysis of Ovarian Cancer. Front Pharmacol 2022; 13:855488. [PMID: 35431949 PMCID: PMC9005897 DOI: 10.3389/fphar.2022.855488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
Energy metabolism reprogramming is the characteristic feature of tumors. The tumorigenesis, metastasis, and drug resistance of ovarian cancer (OC) is dependent on energy metabolism. Even under adequate oxygen conditions, OC cells tend to convert glucose to lactate, and glycolysis can rapidly produce ATP to meet their metabolic energy needs. Non-coding RNAs (ncRNAs) interact directly with DNA, RNA, and proteins to function as an essential regulatory in gene expression and tumor pathology. Studies have shown that ncRNAs regulate the process of glycolysis by interacting with the predominant glycolysis enzyme and cellular signaling pathway, participating in tumorigenesis and progression. This review summarizes the mechanism of ncRNAs regulation in glycolysis in OC and investigates potential therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|