1
|
Nakayasu S, Tanji M, Uto M, Takeuchi Y, Makino Y, Yamamoto Hattori E, Terada Y, Sano N, Mineharu Y, Mizowaki T, Arakawa Y. Hypofractionated radiotherapy combined with bevacizumab plus low-dose ifosfamide, carboplatin, and etoposide as second-line chemoradiotherapy for progressing spinal diffuse midline glioma, H3K27-altered: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE2464. [PMID: 39133948 PMCID: PMC11323846 DOI: 10.3171/case2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/20/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Spinal cord diffuse midline glioma (DMG) is a relatively rare disease with a poor prognosis and no effective treatment. OBSERVATIONS A 45-year-old man presented with rapidly progressive paraplegia in both lower extremities, along with bladder and bowel disturbance. Spinal magnetic resonance imaging (MRI) showed a heterogeneously contrast-enhanced mass at the T1-4 levels. A biopsy via T1-4 decompressive laminectomy with expansive duraplasty was performed. The histopathological diagnosis was DMG, H3K27-altered, World Health Organization grade 4. Radiation plus concomitant temozolomide was started; however, follow-up MRI showed tumor progression. Additional hypofractionated radiotherapy (HFRT; 24 Gy/5 fractions) was performed, with bevacizumab (BEV) plus low-dose ifosfamide-carboplatin-etoposide (ICE) as second-line treatment. One month later, MRI showed tumor regression with significant improvement in the peritumoral edema. The chemotherapy regimen was repeated every 4-6 weeks, and the patient remained stable. After 13 courses of chemotherapy, the size of the spinal DMG increased markedly, with dissemination to the temporal lobe. The patient died approximately 21 months after the initial diagnosis. LESSONS Spinal DMG is a malignant tumor with a poor prognosis. However, treatment with additional HFRT combined with BEV plus low-dose ICE may inhibit tumor progression to prolong the progression-free period and survival. https://thejns.org/doi/10.3171/CASE2464.
Collapse
Affiliation(s)
- Shintaro Nakayasu
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Uji Tokushu-kai Hospital, Kyoto, Japan
| | - Masahiro Tanji
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumi Uto
- Departments of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yasuhide Makino
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Yukinori Terada
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noritaka Sano
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Mineharu
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Mizowaki
- Departments of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Desai J, Rajkumar S, Shepard MJ, Herbst J, Karlovits SM, Hasan S, Horne ZD, Wegner RE. National trends in the treatment of adult diffuse midline gliomas: a rare clinical scenario. J Neurooncol 2024; 168:269-274. [PMID: 38630388 DOI: 10.1007/s11060-024-04663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Diffuse midline gliomas (DMG) include all midline gliomas with a point mutation to the histone H3 gene resulting in the substitution of a lysine with a methionine (K27M). These tumors are classified as World Health Organization grade 4 with a mean survival between 9- and 19-months following diagnosis. There is currently no standard of care for DMG, and palliative radiation therapy has been proven to only extend survival by months. Our current study aims to report current treatment trends and predictors of the overall survival of DMG. METHODS We searched the National Cancer Database for adult patients treated for DMG from 2016 to 2020. Patients were required to have been treated with primary radiation directed at the brain with or without concurrent chemotherapy. Univariable and multivariable Cox regressions were used to determine predictors of overall survival. RESULTS Of the 131 patients meeting the inclusion criteria, 113 (86%) received radiation and chemotherapy. Based on multivariable Cox regression, significant predictors of survival were Charlson-Deyo comorbidity index and race. Patients with a Charlson-Deyo score of 1 had 2.72 times higher odds of mortality than those with a score of 0. Patients not identifying as White or Black had 2.67 times higher odds of mortality than those identifying as White. The median survival for all patients was 19 months. CONCLUSIONS Despite being considered ineffective, chemotherapy is still administered in most adult patients diagnosed with DMG. Significant predictors of survival were Charlson-Deyo comorbidity index and race.
Collapse
Affiliation(s)
- Jay Desai
- Drexel University College of Medicine, Philadelphia, USA
| | - Sujay Rajkumar
- Drexel University College of Medicine, Philadelphia, USA
| | - Matthew J Shepard
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, USA
| | - John Herbst
- Division of Medical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Stephen M Karlovits
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | | | - Zachary D Horne
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Rodney E Wegner
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, USA.
| |
Collapse
|
5
|
Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 2024; 26:S92-S100. [PMID: 37818718 PMCID: PMC11066930 DOI: 10.1093/neuonc/noad164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
High-grade glioma (HGG) is the most common cause of cancer death in children and the most common primary central nervous system tumor in adults. While pediatric HGG was once thought to be biologically similar to the adult form of disease, research has shown these malignancies to be significantly molecularly distinct, necessitating distinct approaches to their clinical management. However, emerging data have shown shared molecular events in pediatric and adult HGG including the histone H3K27M mutation. This somatic missense mutation occurs in genes encoding one of two isoforms of the Histone H3 protein, H3F3A (H3.3), or HIST1H3B (H3.1), and is detected in up to 80% of pediatric diffuse midline gliomas and in up to 60% of adult diffuse gliomas. Importantly, the H3K27M mutation is associated with poorer overall survival and response to therapy compared to patients with H3 wild-type tumors. Here, we review the clinical features and biological underpinnings of pediatric and adult H3K27M mutant glioma, offering a groundwork for understanding current research and clinical approaches for the care of patients suffering with this challenging disease.
Collapse
Affiliation(s)
| | | | - Antonela Petrovic
- DMG Research Center, Department of Oncology, University Children’s Hospital, University of Zürich, Zürich, Switzerland
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Wang D, Yan K, Yu H, Li H, Zhou W, Hong Y, Guo S, Wang Y, Xu C, Pan C, Tang Y, Liu N, Wu W, Zhang L, Xi Q. Fimepinostat Impairs NF-κB and PI3K/AKT Signaling and Enhances Gemcitabine Efficacy in H3.3K27M-Diffuse Intrinsic Pontine Glioma. Cancer Res 2024; 84:598-615. [PMID: 38095539 DOI: 10.1158/0008-5472.can-23-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most aggressive pediatric brain tumor, and the oncohistone H3.3K27M mutation is associated with significantly worse clinical outcomes. Despite extensive research efforts, effective approaches for treating DIPG are lacking. Through drug screening, we identified the combination of gemcitabine and fimepinostat as a potent therapeutic intervention for H3.3K27M DIPG. H3.3K27M facilitated gemcitabine-induced apoptosis in DIPG, and gemcitabine stabilized and activated p53, including increasing chromatin accessibility for p53 at apoptosis-related loci. Gemcitabine simultaneously induced a prosurvival program in DIPG through activation of RELB-mediated NF-κB signaling. Specifically, gemcitabine induced the transcription of long terminal repeat elements, activated cGAS-STING signaling, and stimulated noncanonical NF-κB signaling. A drug screen in gemcitabine-treated DIPG cells revealed that fimepinostat, a dual inhibitor of HDAC and PI3K, effectively suppressed the gemcitabine-induced NF-κB signaling in addition to blocking PI3K/AKT activation. Combination therapy comprising gemcitabine and fimepinostat elicited synergistic antitumor effects in vitro and in orthotopic H3.3K27M DIPG xenograft models. Collectively, p53 activation using gemcitabine and suppression of RELB-mediated NF-κB activation and PI3K/AKT signaling using fimepinostat is a potential therapeutic strategy for treating H3.3K27M DIPG. SIGNIFICANCE Gemcitabine activates p53 and induces apoptosis to elicit antitumor effects in H3.3K27M DIPG, which can be enhanced by blocking NF-κB and PI3K/AKT signaling with fimepinostat, providing a synergistic combination therapy for DIPG.
Collapse
Affiliation(s)
- Dan Wang
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongxing Yu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haocheng Li
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Zhou
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqiang Hong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuning Guo
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nian Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Liu X, Jiang Z, Roth HR, Anwar SM, Bonner ER, Mahtabfar A, Packer RJ, Kazerooni AF, Bornhorst M, Linguraru MG. Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: a two-center study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297935. [PMID: 37961086 PMCID: PMC10635257 DOI: 10.1101/2023.11.01.23297935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS). Methods We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, T2 FLAIR) and manual segmentations from two centers of 53 (internal cohort) and 16 (external cohort) DMG patients. We pretrained a deep learning model on a public adult brain tumor dataset, and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 1-year survival from diagnosis. One model used only diagnostic tumor features and the other used both diagnostic and post-RT features. Results For segmentation, Dice score (mean [median]±SD) was 0.91 (0.94)±0.12 and 0.74 (0.83)±0.32 for TC, and 0.88 (0.91)±0.07 and 0.86 (0.89)±0.06 for WT for internal and external cohorts, respectively. For OS prediction, accuracy was 77% and 81% at time of diagnosis, and 85% and 78% post-RT for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS. Conclusions Machine learning analysis of MRI radiomics has potential to accurately and non-invasively predict which pediatric patients with DMG will survive less than one year from the time of diagnosis to provide patient stratification and guide therapy.
Collapse
Affiliation(s)
- Xinyang Liu
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital
| | - Zhifan Jiang
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital
| | | | - Syed Muhammad Anwar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital
- School of Medicine and Health Sciences, George Washington University
| | - Erin R Bonner
- Brain Tumor Institute, Children's National Hospital
- School of Medicine and Health Sciences, George Washington University
| | - Aria Mahtabfar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia
| | | | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia
- Department of Neurosurgery, University of Pennsylvania
- Center for AI & Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania
| | - Miriam Bornhorst
- Brain Tumor Institute, Children's National Hospital
- School of Medicine and Health Sciences, George Washington University
| | - Marius George Linguraru
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital
- School of Medicine and Health Sciences, George Washington University
| |
Collapse
|
8
|
Liu X, Jiang Z, Roth HR, Anwar SM, Bonner ER, Mahtabfar A, Packer RJ, Kazerooni AF, Bornhorst M, Linguraru MG. Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: A two-center study. Neurooncol Adv 2024; 6:vdae108. [PMID: 39027132 PMCID: PMC11255990 DOI: 10.1093/noajnl/vdae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS). Methods We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, and T2 FLAIR) and manual segmentations from 2 centers: 53 from 1 center formed the internal cohort and 16 from the other center formed the external cohort. We pretrained a deep learning model on a public adult brain tumor data set (BraTS 2021), and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 12-month survival from diagnosis. One model used only data obtained at diagnosis prior to any therapy (baseline study) and the other used data at both diagnosis and post-RT (post-RT study). Results Overall survival prediction accuracy was 77% and 81% for the baseline study, and 85% and 78% for the post-RT study, for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS. Conclusions Machine learning analysis of MRI radiomics has potential to accurately and noninvasively predict which pediatric patients with DMG will survive less than 12 months from the time of diagnosis to provide patient stratification and guide therapy.
Collapse
Affiliation(s)
- Xinyang Liu
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
| | - Zhifan Jiang
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
| | | | - Syed Muhammad Anwar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
- School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
| | - Erin R Bonner
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Aria Mahtabfar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Roger J Packer
- Brain Tumor Institute, Children’s National Hospital, Washington, District of Columbia, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D), Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miriam Bornhorst
- School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Hospital, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorders, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Marius George Linguraru
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
- School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Al Sharie S, Abu Laban D, Al-Hussaini M. Decoding Diffuse Midline Gliomas: A Comprehensive Review of Pathogenesis, Diagnosis and Treatment. Cancers (Basel) 2023; 15:4869. [PMID: 37835563 PMCID: PMC10571999 DOI: 10.3390/cancers15194869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are a group of aggressive CNS tumors, primarily affecting children and young adults, which have historically been associated with dismal outcomes. As the name implies, they arise in midline structures in the CNS, primarily in the thalamus, brainstem, and spinal cord. In more recent years, significant advances have been made in our understanding of DMGs, including molecular features, with the identification of potential therapeutic targets. We aim to provide an overview of the most recent updates in the field of DMGs, including classification, molecular subtypes, diagnostic techniques, and emerging therapeutic strategies including a review of the ongoing clinical trials, thus providing the treating multidisciplinary team with a comprehensive understanding of the current landscape and potential therapeutic strategies for this devastating group of tumors.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
10
|
Miguel Llordes G, Medina Pérez VM, Curto Simón B, Castells-Yus I, Vázquez Sufuentes S, Schuhmacher AJ. Epidemiology, Diagnostic Strategies, and Therapeutic Advances in Diffuse Midline Glioma. J Clin Med 2023; 12:5261. [PMID: 37629304 PMCID: PMC10456112 DOI: 10.3390/jcm12165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Object: Diffuse midline glioma (DMG) is a highly aggressive and lethal brain tumor predominantly affecting children and young adults. Previously known as diffuse intrinsic pontine glioma (DIPG) or grade IV brain stem glioma, DMG has recently been reclassified as "diffuse midline glioma" according to the WHO CNS5 nomenclature, expanding the DMG demographic. Limited therapeutic options result in a poor prognosis, despite advances in diagnosis and treatment. Radiotherapy has historically been the primary treatment modality to improve patient survival. Methods: This systematic literature review aims to comprehensively compile information on the diagnosis and treatment of DMG from 1 January 2012 to 31 July 2023. The review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and utilized databases such as PubMed, Cochrane Library, and SciELO. Results: Currently, molecular classification of DMG plays an increasingly vital role in determining prognosis and treatment options. Emerging therapeutic avenues, including immunomodulatory agents, anti-GD2 CAR T-cell and anti-GD2 CAR-NK therapies, techniques to increase blood-brain barrier permeability, isocitrate dehydrogenase inhibitors, oncolytic and peptide vaccines, are being explored based on the tumor's molecular composition. However, more clinical trials are required to establish solid guidelines for toxicity, dosage, and efficacy. Conclusions: The identification of the H3K27 genetic mutation has led to the reclassification of certain midline tumors, expanding the DMG demographic. The field of DMG research continues to evolve, with encouraging findings that underscore the importance of highly specific and tailored therapeutic strategies to achieve therapeutic success.
Collapse
Affiliation(s)
- Gloria Miguel Llordes
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Irene Castells-Yus
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Pan E. Potential Molecular Targets in the Treatment of Patients with CNS Tumors. Cancers (Basel) 2023; 15:3807. [PMID: 37568623 PMCID: PMC10417102 DOI: 10.3390/cancers15153807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The challenges in identifying effective therapies for CNS tumors continue to be daunting [...].
Collapse
Affiliation(s)
- Edward Pan
- Daiichi-Sankyo, Inc., 211 Mt. Airy Road, Basking Ridge, NJ 07920, USA
| |
Collapse
|
12
|
Park J, Chung C. Epigenetic and Metabolic Changes in Diffuse Intrinsic Pontine Glioma. Brain Tumor Res Treat 2023; 11:86-93. [PMID: 37151150 PMCID: PMC10172016 DOI: 10.14791/btrt.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG), hitherto known as diffuse intrinsic pontine glioma (DIPG), is a rare and aggressive form of brain cancer that primarily affects children. Although the exact cause of DMG/DIPG is not known, a large proportion of DMG/DIPG tumors harbor mutations in the gene encoding the histone H3 protein, specifically the H3K27M mutation. This mutation decreases the level of H3K27me3, a histone modification that plays a vital role in regulating gene expression through epigenetic regulation. The mutation also alters the function of polycomb repressive complex 2 (PRC2), thereby preventing the repression of genes associated with cancer development. The decrease in H3K27me3 caused by the histone H3 mutation is accompanied by an increase in the level of H3K27ac, a post-translational modification related to active transcription. Dysregulation of histone modification markedly affects gene expression, contributing to cancer development and progression by promoting uncontrolled cell proliferation, tumor growth, and metabolism. DMG/DIPG alters the metabolism of methionine and the tricarboxylic acid cycle, as well as glucose and glutamine uptake. The role of epigenetic and metabolic changes in the development of DMG/DIPG has been studied extensively, and understanding these changes is critical to developing therapies targeting these pathways. Studies are currently underway to identify new therapeutic targets for DMG/DIPG, which may lead to the development of effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Jiyoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Chan Chung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
13
|
Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene Therapy for High Grade Glioma: The Clinical Experience. Expert Opin Biol Ther 2023; 23:145-161. [PMID: 36510843 PMCID: PMC9998375 DOI: 10.1080/14712598.2022.2157718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved. AREAS COVERED Gene therapy was developed as a promising approach to treat HGG. Here, we review completed and ongoing clinical trials employing viral and non-viral vectors for adult and pediatric HGG, as well as the key supporting preclinical data. EXPERT OPINION These therapies have proven safe, and pre- and post-treatment tissue analyses demonstrated tumor cell lysis, increased immune cell infiltration, and increased systemic immune function. Although viral therapy in clinical trials has not yet significantly extended the survival of HGG, promising strategies are being tested. Oncolytic HSV vectors have shown promising results for both adult and pediatric HGG. A recently published study demonstrated that HG47Δ improved survival in recurrent HGG. Likewise, PVSRIPO has shown survival improvement compared to historical controls. It is likely that further analysis of these trials will stimulate the development of new administration protocols, and new therapeutic combinations that will improve HGG prognosis.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marcus N Barissi
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sean Sachdev
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Power EA, Rechberger JS, Zhang L, Oh JH, Anderson JB, Nesvick CL, Ge J, Hinchcliffe EH, Elmquist WF, Daniels DJ. Overcoming translational barriers in H3K27-altered diffuse midline glioma: Increasing the drug-tumor residence time. Neurooncol Adv 2023; 5:vdad033. [PMID: 37128506 PMCID: PMC10148679 DOI: 10.1093/noajnl/vdad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background H3K27-altered diffuse midline glioma (DMG) is the deadliest pediatric brain tumor; despite intensive research efforts, every clinical trial to date has failed. Is this because we are choosing the wrong drugs? Or are drug delivery and other pharmacokinetic variables at play? We hypothesize that the answer is likely a combination, where optimization may result in a much needed novel therapeutic approach. Methods We used in vitro drug screening, patient samples, and shRNA knockdown models to identify an upregulated target in DMG. A single small molecule protein kinase inhibitor with translational potential was selected for systemic and direct, loco-regional delivery to patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM). Pharmacokinetic studies were conducted in non-tumor bearing rats. Results Aurora kinase (AK) inhibitors demonstrated strong antitumor effects in DMG drug screens. Additional in vitro studies corroborated the importance of AK to DMG survival. Systemic delivery of alisertib showed promise in subcutaneous PDX but not intracranial GEMM and PDX models. Repeated loco-regional drug administration into the tumor through convection-enhanced delivery (CED) was equally inefficacious, and pharmacokinetic studies revealed rapid clearance of alisertib from the brain. In an effort to increase the drug to tumor residence time, continuous CED over 7 days improved drug retention in the rodent brainstem and significantly extended survival in both orthotopic PDXs and GEMMs. Conclusions These studies provide evidence for increasing drug-tumor residence time of promising targeted therapies via extended CED as a valuable treatment strategy for DMG.
Collapse
Affiliation(s)
- Erica A Power
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jacob B Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Cody L Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jizhi Ge
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics (Basel) 2022; 12:2064. [PMID: 36140466 PMCID: PMC9497626 DOI: 10.3390/diagnostics12092064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Fabozzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, 00165 Rome, Italy
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emmanuel de Billy
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|