1
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ndlovu H, Lawal IO, Mdanda S, Kgatle MM, Mokoala KMG, Al-Ibraheem A, Sathekge MM. [ 18F]F-Poly(ADP-Ribose) Polymerase Inhibitor Radiotracers for Imaging PARP Expression and Their Potential Clinical Applications in Oncology. J Clin Med 2024; 13:3426. [PMID: 38929955 PMCID: PMC11204862 DOI: 10.3390/jcm13123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Including poly(ADP-ribose) polymerase (PARP) inhibitors in managing patients with inoperable tumors has significantly improved outcomes. The PARP inhibitors hamper single-strand deoxyribonucleic acid (DNA) repair by trapping poly(ADP-ribose)polymerase (PARP) at sites of DNA damage, forming a non-functional "PARP enzyme-inhibitor complex" leading to cell cytotoxicity. The effect is more pronounced in the presence of PARP upregulation and homologous recombination (HR) deficiencies such as breast cancer-associated gene (BRCA1/2). Hence, identifying HR-deficiencies by genomic analysis-for instance, BRCA1/2 used in triple-negative breast cancer-should be a part of the selection process for PARP inhibitor therapy. Published data suggest BRCA1/2 germline mutations do not consistently predict favorable responses to PARP inhibitors, suggesting that other factors beyond tumor mutation status may be at play. A variety of factors, including tumor heterogeneity in PARP expression and intrinsic and/or acquired resistance to PARP inhibitors, may be contributing factors. This justifies the use of an additional tool for appropriate patient selection, which is noninvasive, and capable of assessing whole-body in vivo PARP expression and evaluating PARP inhibitor pharmacokinetics as complementary to the currently available BRCA1/2 analysis. In this review, we discuss [18F]Fluorine PARP inhibitor radiotracers and their potential in the imaging of PARP expression and PARP inhibitor pharmacokinetics. To provide context we also briefly discuss possible causes of PARP inhibitor resistance or ineffectiveness. The discussion focuses on TNBC, which is a tumor type where PARP inhibitors are used as part of the standard-of-care treatment strategy.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Sipho Mdanda
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mankgopo M. Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha P.O. Box 1269, Amman 11941, Jordan;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
3
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ilyas S, E M Sahnoun S, Szymura A, Pes J, Habib S, Florea A, Schäfer L, Buhl EM, Morgenroth A, Habib P, Mottaghy FM, Mathur S. Validation of Dual-Action Chemo-Radio-Labeled Nanocarriers with High Efficacy against Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48963-48977. [PMID: 37831583 DOI: 10.1021/acsami.3c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Identification and selectivity of molecular targets with prolonged action for difficult-to-target cancer such as triple-negative breast cancer (TNBC) represent a persisting challenge in the precision delivery of therapeutics. In the quest to target undruggable sites, this study validates the bioavailability of polydopamine-sealed mesoporous silica nanocarriers (PDA-mSiO2) for in vivo drug delivery to TNBC. For controlled transport and release, the chemotherapeutic drug doxorubicin was encapsulated in mSiO2 nanocarriers coated with a PDA layer serving as a stimuli-responsive gatekeeper or seal. For unifying targeting and treatment modalities, these nanocarriers were covalently conjugated to a macrocyclic chelator (DOTA) and folate (FA-mSiO2.) that enabled incorporation of radionuclides and identification of FR Alpha (FolRα) receptors present on TNBC cells. The robust chemical design of FA- and DOTA-functionalized PDA-coated mSiO2 nanocarriers constitutes mild reaction conditions to avoid the loss of surface-bound molecules. The radiolabeling studies with the theranostic pair 68Ga and 177Lu showed quantitative trends for radiochemical efficacy and purity. Nanocarriers equipped with both radiolabels and affinity ligands were optimally stable when incubated with human serum for up to 120 h (177Lu), demonstrating hydrophilicity with a partition coefficient (log P) of -3.29 ± 0.08. Specifically, when incubated with TNBC cells, the cells received significant FA-mSiO2 carriers, demonstrating efficient carrier internalization and time-dependent uptake. Moreover, in vivo results visualize the retention of drug-filled carriers at the tumor sites for a long time, which holds promise for therapeutic studies. This research work demonstrates for the first time the successful dual conjugation of nanocarriers through the colocation of radionuclides and anticancer drugs that is promising for both live molecular imaging and enhanced therapeutic effect for TNBC.
Collapse
Affiliation(s)
- Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Annika Szymura
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Jonas Pes
- Department of Neurology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Shahin Habib
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Laura Schäfer
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Pardes Habib
- Department of Neurology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Biochemistry and Molecular Immunology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, 50937 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| |
Collapse
|
5
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Huang Y, Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Global trends in BRCA-related breast cancer research from 2013 to 2022: A scientometric analysis. Front Oncol 2023; 13:1197168. [PMID: 37476378 PMCID: PMC10354558 DOI: 10.3389/fonc.2023.1197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Since the mid-2000s, breast cancer incidence among women has slowly increased at about 0.5% per year. In the last three decades, Breast Cancer Susceptibility Gene (BRCA) has been proven to be the crucial gene in encouraging the incidence and development of breast cancer. However, scientometric analysis on BRCA-related breast cancer is in shortage. Thus, to have a clear understanding of the current status and catch up with the hotspots, a scientometric analysis was conducted on specific academic publications collected from the Web of Science (WoS). Methods We searched the Web of Science Core Collection (WoSCC) to procure associated articles as our dataset. Bibliometric, CiteSpace, VOSviewer, and HistCite software were then applied to conduct visual analyses of countries, institutions, journals, authors, landmark articles, and keywords in this research field. Results A total of 7,266 articles and 1,310 review articles published between 2013 to 2022 were retrieved eventually. The annual output steadily rose year by year and peaked in 2021. The USA led the way in the number of published works, total citations, and collaboration. Breast Cancer Research and Treatment was the most favoured journal in this research field. Narod SA from the University of Toronto produced the most publications. At last, the most prominent keywords were "breast cancer" (n=1,778), "women" (n=1,369), "brca1" (n=1,276), "ovarian cancer" (n=1,259), "risk" (n=1,181), and "mutations" (n=929), which exposed the hotspots within the BRCA domain of breast cancer study. Conclusion The tendency in the BRCA research field over the past decade was presented by the scientometric analysis. The current research focus is the clinical trials of poly-adenosine diphosphate ribose polymerase inhibitors (PARPi) drugs and their resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyang Li
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| | - Yexi Chen
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| |
Collapse
|
7
|
Hoffman SLV, Mixdorf JC, Kwon O, Johnson TR, Makvandi M, Lee H, Aluicio-Sarduy E, Barnhart TE, Jeffery JJ, Patankar MS, Engle JW, Bednarz BP, Ellison PA. Preclinical studies of a PARP targeted, Meitner-Auger emitting, theranostic radiopharmaceutical for metastatic ovarian cancer. Nucl Med Biol 2023; 122-123:108368. [PMID: 37490805 PMCID: PMC10529069 DOI: 10.1016/j.nucmedbio.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Advanced ovarian cancer currently has few therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors bind to nuclear PARP and trap the protein-inhibitor complex to DNA. This work investigates a theranostic PARP inhibitor for targeted radiopharmaceutical therapy of ovarian cancer in vitro and PET imaging of healthy mice in vivo. METHODS [77Br]RD1 was synthesized and assessed for pharmacokinetics and cytotoxicity in human and murine ovarian cancer cell lines. [76Br]RD1 biodistribution and organ uptake in healthy mice were quantified through longitudinal PET/CT imaging and ex vivo radioactivity measurements. Organ-level dosimetry following [76/77Br]RD1 administration was calculated using RAPID, an in-house platform for absorbed dose in mice, and OLINDA for equivalent and effective dose in human. RESULTS The maximum specific binding (Bmax), equilibrium dissociation constant (Kd), and nonspecific binding slope (NS) were calculated for each cell line. These values were used to calculate the cell specific activity uptake for cell viability studies. The half maximal effective concentration (EC50) was measured as 0.17 (95 % CI: 0.13-0.24) nM and 0.46 (0.13-0.24) nM for PARP(+) and PARP(-) expressing cell lines, respectively. The EC50 was 0.27 (0.21-0.36) nM and 0.30 (0.22-0.41) nM for BRCA1(-) and BRCA1(+) expressing cell lines, respectively. When measuring the EC50 as a function of cellular activity uptake and nuclear dose, the EC50 ranges from 0.020 to 0.039 Bq/cell and 3.3-9.2 Gy, respectively. Excretion through the hepatobiliary and renal pathways were observed in mice, with liver uptake of 2.3 ± 0.4 %ID/g after 48 h, contributing to estimated absorbed dose values in mice of 19.3 ± 0.3 mGy/MBq and 290 ± 10 mGy/MBq for [77Br]RD1 and [76Br]RD1, respectively. CONCLUSION [77Br]RD1 cytotoxicity was dependent on PARP expression and independent of BRCA1 status. The in vitro results suggest that [77Br]RD1 cytotoxicity is driven by the targeted Meitner-Auger electron (MAe) radiotherapeutic effect of the agent. Further studies investigating the theranostic potential, organ dose, and tumor uptake of [76/77Br]RD1 are warranted.
Collapse
Affiliation(s)
- S L V Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - O Kwon
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T R Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - M S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - B P Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - P A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
8
|
Wawrowicz K, Żelechowska-Matysiak K, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. Platinum nanoparticles labelled with iodine-125 for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. NANOSCALE ADVANCES 2023; 5:3293-3303. [PMID: 37325536 PMCID: PMC10262957 DOI: 10.1039/d3na00165b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Convenient therapeutic protocols against hepatocellular carcinoma (HCC) exhibit low treatment effectiveness, especially in the context of long-term effects, which is primarily related to late diagnosis and high tumor heterogeneity. Current trends in medicine concern combined therapy to achieve new powerful tools against the most aggressive diseases. When designing modern, multimodal therapeutics, it is necessary to look for alternative routes of specific drug delivery to the cell, its selective (with respect to the tumor) activity and multidirectional action, enhancing the therapeutic effect. Targeting the physiology of the tumor makes it possible to take advantage of certain characteristic properties of the tumor that differentiate it from other cells. In the present paper we designed for the first time iodine-125 labeled platinum nanoparticles for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. High selectivity achieved by targeting the tumor microenvironment of these cells was associated with effective radionuclide desorption in the presence of H2O2. The therapeutic effect was found to be correlated with cell damage at various molecular levels including DNA DSBs and was observed in a dose-dependent manner. A three-dimensional tumor spheroid revealed successful radioconjugate anticancer activity with a significant treatment response. A possible concept for clinical application after prior in vivo trials may be achieved via transarterial injection of micrometer range lipiodol emulsions with encapsulated 125I-NP. Ethiodized oil gives several advantages especially for HCC treatment; thus bearing in mind a suitable particle size for embolization, the obtained results highlight the exciting prospects for the development of PtNP-based combined therapy.
Collapse
Affiliation(s)
- Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
- Department of Nuclear Medicine, Central Clinical Hospital of the Ministry of the Interior and Administration Wołoska 137 St. 02-507 Warsaw Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences Ciszewskiego 8 St. 02-786 Warsaw Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology Dorodna 16 St. 03-195 Warsaw Poland
| |
Collapse
|
9
|
Sankaranarayanan RA, Peil J, Vogg ATJ, Bolm C, Terhorst S, Classen A, Bauwens M, Maurer J, Mottaghy F, Morgenroth A. Correction: Sankaranarayanan et al. Auger Emitter Conjugated PARP Inhibitor for Therapy in Triple Negative Breast Cancers: A Comparative In-Vitro Study. Cancers 2022, 14, 230. Cancers (Basel) 2023; 15:cancers15092641. [PMID: 37174130 PMCID: PMC10177469 DOI: 10.3390/cancers15092641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The authors wish to replace the 'Author Contributions' statement and the affiliation for Jochen Maurer of this article [...].
Collapse
Affiliation(s)
| | - Jennifer Peil
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas T J Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Steven Terhorst
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Arno Classen
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229HX Maastricht, The Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
10
|
Mixdorf JC, Hoffman SLV, Aluicio-Sarduy E, Barnhart TE, Engle JW, Ellison PA. Copper-Mediated Radiobromination of (Hetero)Aryl Boronic Pinacol Esters. J Org Chem 2023; 88:2089-2094. [PMID: 36745853 PMCID: PMC9957949 DOI: 10.1021/acs.joc.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.
Collapse
Affiliation(s)
- Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Sabrina L. V. Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Paul A. Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| |
Collapse
|
11
|
Sreekumar S, Zhou D, Mpoy C, Schenk E, Scott J, Arbeit JM, Xu J, Rogers BE. Preclinical Efficacy of a PARP-1 Targeted Auger-Emitting Radionuclide in Prostate Cancer. Int J Mol Sci 2023; 24:3083. [PMID: 36834491 PMCID: PMC9967758 DOI: 10.3390/ijms24043083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
There is an unmet need for better therapeutic strategies for advanced prostate cancer. Poly (ADP-ribose) polymerase-1 (PARP-1) is a chromatin-binding DNA repair enzyme overexpressed in prostate cancer. This study evaluates whether PARP-1, on account of its proximity to the cell's DNA, would be a good target for delivering high-linear energy transfer Auger radiation to induce lethal DNA damage in prostate cancer cells. We analyzed the correlation between PARP-1 expression and Gleason score in a prostate cancer tissue microarray. A radio-brominated Auger emitting inhibitor ([77Br]Br-WC-DZ) targeting PARP-1 was synthesized. The ability of [77Br]Br-WC-DZ to induce cytotoxicity and DNA damage was assessed in vitro. The antitumor efficacy of [77Br]Br-WC-DZ was investigated in prostate cancer xenograft models. PARP-1 expression was found to be positively correlated with the Gleason score, thus making it an attractive target for Auger therapy in advanced diseases. The Auger emitter, [77Br]Br-WC-DZ, induced DNA damage, G2-M cell cycle phase arrest, and cytotoxicity in PC-3 and IGR-CaP1 prostate cancer cells. A single dose of [77Br]Br-WC-DZ inhibited the growth of prostate cancer xenografts and improved the survival of tumor-bearing mice. Our studies establish the fact that PARP-1 targeting Auger emitters could have therapeutic implications in advanced prostate cancer and provides a strong rationale for future clinical investigation.
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dong Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elsa Schenk
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jalen Scott
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Destro G, Chen Z, Chan CY, Fraser C, Dias G, Mosley M, Guibbal F, Gouverneur V, Cornelissen B. A radioiodinated rucaparib analogue as an Auger electron emitter for cancer therapy. Nucl Med Biol 2023; 116-117:108312. [PMID: 36621256 DOI: 10.1016/j.nucmedbio.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Radioligand therapy (RLT) is an expanding field that has shown great potential in the fight against cancer. Radionuclides that can be carried by selective ligands such as antibodies, peptides, and small molecules targeting cancerous cells have demonstrated a clear improvement in the move towards precision medicine. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage repair signalling pathway, with PARP inhibitors olaparib, talazoparib, niraparib, veliparib, and rucaparib having FDA approval for cancer therapy in routine clinical use. Based on our previous work with the radiolabelled PARP inhibitor [18F]rucaparib, we replaced the fluorine-18 moiety, used for PET imaging, with iodine-123, a radionuclide used for SPECT imaging and Auger electron therapy, resulting in 8-[123I]iodo-5-(4-((methylamino)methyl)phenyl)-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indol-1-one, ([123I]GD1), as a potential radiopharmaceutical for RLT. METHODS [123I]GD1 was synthesized via copper-mediated radioiodination from a selected boronic esters precursor. In vitro uptake, retention, blocking, and effects on clonogenic survival with [123I]GD1 treatment were tested in a panel of cancer cell lines. Enzymatic inhibition of PARP by GD1 was also tested in a cell-free system. The biodistribution of [123I]GD1 was investigated by SPECT/CT in mice following intravenous administration. RESULTS Cell-free enzymatic inhibition and in vitro blocking experiments confirmed a modest ability of GD1 to inhibit PARP-1, IC50 = 239 nM. In vitro uptake of [123I]GD1 in different cell lines was dose dependent, and radiolabelled compound was retained in cells for >2 h. Significantly reduced clonogenic survival was observed in vitro after exposure of cells for 1 h with as low as 50 kBq of [123I]GD1. The biodistribution of [123I]GD1 was further characterized in vivo showing both renal and hepatobiliary clearance pathways with a biphasic blood clearance. CONCLUSION We present the development of a new theragnostic agent based on the rucaparib scaffold and its evaluation in in vitro and in vivo models. The data reported show that [123I]GD1 may have potential to be used as a theragnostic agent.
Collapse
Affiliation(s)
- Gianluca Destro
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Chung Ying Chan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Claudia Fraser
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Gemma Dias
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Michael Mosley
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Florian Guibbal
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Veronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Bart Cornelissen
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Ambur Sankaranarayanan R, Florea A, Allekotte S, Vogg ATJ, Maurer J, Schäfer L, Bolm C, Terhorst S, Classen A, Bauwens M, Morgenroth A, Mottaghy FM. PARP targeted Auger emitter therapy with [ 125I]PARPi-01 for triple-negative breast cancer. EJNMMI Res 2022; 12:60. [PMID: 36104637 PMCID: PMC9474773 DOI: 10.1186/s13550-022-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) lacks biomarkers for targeted therapy. Auger emitters display the best therapeutic effect, if delivered directly into the nucleus proximal to DNA. The nuclear protein Poly (ADP-ribose)-Polymerase 1 (PARP1) is a suitable target against which few inhibitors (PARPi) are clinically approved for treatment of breast cancer with germline BRCA mutation (BRCAmut). In this study, a theranostic approach was investigated in a TNBC xenografted mouse model by radiolabelling a close derivative of a PARPi Olaparib (termed PARPi-01) with the Auger emitters 123/125I. METHODS TNBC cell line MDA-MB-231 was subcutaneously implanted in female NOD/SCID mice. At a tumour size of ~ 500mm3, [123I]PARPi-01 was administered intravenously, and SPECT/CT images were obtained at 4 h or 24 h post injection (p.i). A therapy study was performed with [125I]PARPi-01 in 4 doses (10 MBq/dose, 10 days apart). Tumour growth was monitored by CT scans longitudinally once per week. Upon reaching study endpoint, tissues were harvested and stained with TUNEL assay for detection of apoptosis induction. RESULTS SPECT/CT images showed rapid hepatobiliary tracer clearance at 4 h post injection (p.i.). Retention in thyroid at 24 h p.i. suggested tracer deiodination in vivo. The tumour and liver uptake were 0.2%ID/g and 2.5%ID/g, respectively. The tumour: blood ratio was 1.3. Endogenous therapy induced a significant delay in tumour growth (doubling time increased from 8.3 to 14.2 days), but no significant survival advantage. Significantly higher apoptosis ratio was observed in [125I]PARPi-01 treated tumour tissues. No radiotoxicity was detected in the liver and thyroid. CONCLUSION Considering the radio-cytotoxic effect in the tumour tissue and a delay on tumour doubling time, [125I]PARPi-01 presents a potential radiotherapeutics for treatment of TNBC. Improvements to overcome the suboptimal pharmacokinetics are necessary for its potential clinical application.
Collapse
Affiliation(s)
- Ramya Ambur Sankaranarayanan
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexandru Florea
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC+), 6229HX Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Susanne Allekotte
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas T. J. Vogg
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Jochen Maurer
- grid.1957.a0000 0001 0728 696XClinic for Gynaecology and Obstetrics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Laura Schäfer
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Carsten Bolm
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Steven Terhorst
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Arno Classen
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Bauwens
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC+), 6229HX Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Research School NUTRIM, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Agnieszka Morgenroth
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix M. Mottaghy
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC+), 6229HX Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
14
|
Wang Q, Zhang J. Current status and progress in using radiolabelled PARP-1 inhibitors for imaging PARP-1 expression in tumours. Eur J Med Chem 2022; 242:114690. [PMID: 36041258 DOI: 10.1016/j.ejmech.2022.114690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme in the DNA repair process, and the overexpression of PARP-1 in several tumours makes this enzyme a promising molecular target. Recently, several PARP-1 inhibitors, such as olaparib, rucaparib, niraparib and talazoparib, have been clinically approved as anticancer drugs. Several of these inhibitors have been radiolabelled for noninvasive imaging of PARP-1 expression in several types of tumours. In this review, the background and progress for using various radiolabelled PARP-1 inhibitors for cancer diagnosis are discussed and future development directions are proposed.
Collapse
Affiliation(s)
- Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
15
|
Nguyen NT, Pacelli A, Nader M, Kossatz S. DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy. Cancers (Basel) 2022; 14:cancers14051129. [PMID: 35267438 PMCID: PMC8909184 DOI: 10.3390/cancers14051129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In parallel to the successful clinical implementation of PARP1/2 inhibitors as anti-cancer drugs, which interfere with the DNA repair machinery, these small molecule agents have also gained attention as vehicles for molecular imaging and radiotherapy. In this review article, we summarize the development and preclinical evaluation of radioactively-labelled PARP inhibitors for positron emission tomography (PET) for many applications, such as selecting patients for PARP inhibitor treatment, response prediction or monitoring, and diagnosis of tumors. We report on early clinical studies that show safety and feasibility of PARP-imaging in humans. In addition, we summarize the latest developments in the field of PARP-targeted radiotherapy, where PARP inhibitors are studied as vehicles to deposit highly cytotoxic radioisotopes in close proximity to the DNA of tumor cells. Lastly, we look at synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation. Abstract Since it was discovered that many tumor types are vulnerable to inhibition of the DNA repair machinery, research towards efficient and selective inhibitors has accelerated. Amongst other enzymes, poly(ADP-ribose)-polymerase 1 (PARP1) was identified as a key player in this process, which resulted in the development of selective PARP inhibitors (PARPi) as anti-cancer drugs. Most small molecule PARPi’s exhibit high affinity for both PARP1 and PARP2. PARPi are under clinical investigation for mono- and combination therapy in several cancer types and five PARPi are now clinically approved. In parallel, radiolabeled PARPi have emerged for non-invasive imaging of PARP1 expression. PARP imaging agents have been suggested as companion diagnostics, patient selection, and treatment monitoring tools to improve the outcome of PARPi therapy, but also as stand-alone diagnostics. We give a comprehensive overview over the preclinical development of PARP imaging agents, which are mostly based on the PARPi olaparib, rucaparib, and recently also talazoparib. We also report on the current status of clinical translation, which involves a growing number of early phase trials. Additionally, this work provides an insight into promising approaches of PARP-targeted radiotherapy based on Auger and α-emitting isotopes. Furthermore, the review covers synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation.
Collapse
Affiliation(s)
- Nghia T. Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
| | - Anna Pacelli
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
- Correspondence:
| |
Collapse
|