Casagrande N, Borghese C, Aldinucci D. Current and Emerging Approaches to Study Microenvironmental Interactions and Drug Activity in Classical Hodgkin Lymphoma.
Cancers (Basel) 2022;
14:cancers14102427. [PMID:
35626032 PMCID:
PMC9139207 DOI:
10.3390/cancers14102427]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary
In classical Hodgkin Lymphoma (cHL), the tumor microenvironment (TME) plays an important role in tumor progression and treatment response, making its evaluation critical for determining prognosis, treatment strategies and predicting an increase in drug toxicity. Therefore, there is a need to utilize more complex systems to study the cHL-TME and its interplay with tumor cells. To evaluate new anticancer drugs and to find the mechanisms of drug resistance, this review summarizes emerging approaches for the analysis of the TME composition and to identify the state of the disease; the in vitro techniques used to determine the mechanisms involved in the building of an immunosuppressive and protective TME; new 3-dimensional (3D) models, the heterospheroids (HS), developed to mimic TME interactions. Here, we describe the present and likely future clinical applications indicated by the results of these studies and propose a classification for the in vitro culture methods used to study TME interactions in cHL.
Abstract
Classic Hodgkin lymphoma is characterized by a few tumor cells surrounded by a protective and immunosuppressive tumor microenvironment (TME) composed by a wide variety of noncancerous cells that are an active part of the disease. Therefore, new techniques to study the cHL-TME and new therapeutic strategies targeting specifically tumor cells, reactivating the antitumor immunity, counteracting the protective effects of the TME, were developed. Here, we describe new methods used to study the cell composition, the phenotype, and the spatial distribution of Hodgkin and Reed–Sternberg (HRS) cells and of noncancerous cells in tumor tissues. Moreover, we propose a classification, with increasing complexity, of the in vitro functional studies used to clarify the interactions leading not only to HRS cell survival, growth and drug resistance, but also to the immunosuppressive tumor education of monocytes, T lymphocytes and fibroblasts. This classification also includes new 3-dimensional (3D) models, obtained by cultivating HRS cells in extracellular matrix scaffolds or in sponge scaffolds, under non-adherent conditions with noncancerous cells to form heterospheroids (HS), implanted in developing chick eggs (ovo model). We report results obtained with these approaches and their applications in clinical setting.
Collapse