1
|
Wu K, Liu Q, Long K, Duan X, Chen X, Zhang J, Li L, Li B. Deciphering the role of lipid metabolism-related genes in Alzheimer's disease: a machine learning approach integrating Traditional Chinese Medicine. Front Endocrinol (Lausanne) 2024; 15:1448119. [PMID: 39507054 PMCID: PMC11538058 DOI: 10.3389/fendo.2024.1448119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background Alzheimer's disease (AD) represents a progressive neurodegenerative disorder characterized by the accumulation of misfolded amyloid beta protein, leading to the formation of amyloid plaques and the aggregation of tau protein into neurofibrillary tangles within the cerebral cortex. The role of carbohydrates, particularly apolipoprotein E (ApoE), is pivotal in AD pathogenesis due to its involvement in lipid and cholesterol metabolism, and its status as a genetic predisposition factor for the disease. Despite its significance, the mechanistic contributions of Lipid Metabolism-related Genes (LMGs) to AD remain inadequately elucidated. This research endeavor seeks to bridge this gap by pinpointing biomarkers indicative of early-stage AD, with an emphasis on those linked to immune cell infiltration. To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers. Methods Differentially expressed genes (DEGs) were identified by comparing gene expression profiles between healthy individuals and Alzheimer's disease (AD) patients, using data from two Gene Expression Omnibus (GEO) datasets: GSE5281 and GSE138260. Functional enrichment analysis was conducted to elucidate the biological relevance of the DEGs. To ensure the reliability of the results, samples were randomly divided into training and validation sets. The analysis focused on lipid metabolism-related DEGs (LMDEGs) to explore potential biomarkers for AD. Machine learning algorithms, including Support Vector Machine-Recursive Feature Elimination (SVM-RFE) and the Least Absolute Shrinkage and Selection Operator (LASSO) regression model, were applied to identify a key gene biomarker. Additionally, immune cell infiltration and its relationship with the gene biomarker were assessed using the CIBERSORT algorithm. The Integrated Traditional Chinese Medicine (ITCM) database was also referenced to identify Chinese medicines related to lipid metabolism and their possible connection to AD. This comprehensive strategy aims to integrate modern computational methods with traditional medicine to deepen our understanding of AD and its underlying mechanisms. Results The study identified 137 genes from a pool of 751 lipid metabolism-related genes (LMGs) significantly associated with autophagy and immune response mechanisms. Through the application of LASSO and SVM-RFE machine-learning techniques, four genes-choline acetyl transferase (CHAT), member RAS oncogene family (RAB4A), acyl-CoA binding domain-containing protein 6 (ACBD6), and alpha-galactosidase A (GLA)-emerged as potential biomarkers for Alzheimer's disease (AD). These genes demonstrated strong therapeutic potential due to their involvement in critical biological pathways. Notably, nine Chinese medicine compounds were identified to target these marker genes, offering a novel treatment approach for AD. Further, ceRNA network analysis revealed complex regulatory interactions involving these genes, underscoring their importance in AD pathology. CIBERSORT analysis highlighted a potential link between changes in the immune microenvironment and CHAT expression levels in AD patients, providing new insights into the immunological dimensions of the disease. Conclusion The discovery of these gene markers offers substantial promise for the diagnosis and understanding of Alzheimer's disease (AD). However, further investigation is necessary to validate their clinical utility. This study illuminates the role of Lipid Metabolism-related Genes (LMGs) in AD pathogenesis, offering potential targets for therapeutic intervention. It enhances our grasp of AD's complex mechanisms and paves the way for future research aimed at refining diagnostic and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Li
- *Correspondence: Li Li, ; Bin Li,
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang Y, Chen F, Qu W, Gong Y, Wang Y, Chen L, Zhou Q, Mo J, Zhang H, Lin L, Bi T, Wang X, Gu J, Li Y, Sui L. Alternative splicing in the genome of HPV and its regulation. Front Cell Infect Microbiol 2024; 14:1443868. [PMID: 39502170 PMCID: PMC11534716 DOI: 10.3389/fcimb.2024.1443868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the main cause of cervical cancer. These chronic infections are characterized by high expression of the HPV E6 and E7 oncogenes and the absence of the L1 and L2 capsid proteins. The regulation of HPV gene expression plays a crucial role in both the viral life cycle and rare oncogenic events. Alternative splicing of HPV mRNA is a key mechanism in post-transcriptional regulation. Through alternative splicing, HPV mRNA is diversified into various splice isoforms with distinct coding potentials, encoding multiple proteins and influencing the expression of HPV genes. The spliced mRNAs derived from a donor splicing site within the E6 ORF and one of the different acceptor sites located in the early mRNA contain E6 truncated mRNAs, named E6*. E6* is one of the extensively studied splicing isoforms. However, the role of E6* proteins in cancer progression remains controversial. Here, we reviewed and compared the alternative splicing events occurring in the genomes of HR-HPV and LR-HPV. Recently, new HPV alternative splicing regulatory proteins have been continuously discovered, and we have updated the regulation of HPV alternative splicing. In addition, we summarized the functions of known splice isoforms from three aspects: anti-tumorigenic, tumorigenic, and other cancer-related functions, including not only E6*, but also E6^E7, E8^E2, and so on. Comprehending their contributions to cancer development enhances insights into the carcinogenic mechanisms of HPV and explores the potential utility of alternative splicing in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fang Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingxin Gong
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Limei Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhou
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiayin Mo
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongwei Zhang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianyi Bi
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xujie Wang
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Jiashi Gu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
3
|
Deng L, Hua RX, Deng C, Zhu J, Zhang Z, Cheng J, Zhang J, Zhou H, Li S, Ruan J, Liu G, He J, Fu W. WDR4 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. J Cancer 2023; 14:1293-1300. [PMID: 37283791 PMCID: PMC10240673 DOI: 10.7150/jca.83747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Wilms tumor is the most common embryonal renal malignancy in children. WDR4 is an indispensable noncatalytic subunit of the RNA N7-methylguanosine (m7G) methyltransferase complex and plays an essential role in tumorigenesis. However, the relationship between polymorphisms in the WDR4 gene and susceptibility to Wilms tumor remains to be fully investigated. We performed a large case-control study involving 414 patients and 1199 cancer-free controls to investigate whether single nucleotide polymorphisms (SNPs) in the WDR4 gene are associated with Wilms tumor susceptibility. WDR4 gene polymorphisms (rs2156315 C > T, rs2156316 C > G, rs6586250 C > T, rs15736 G > A, and rs2248490 C > G) were genotyped using the TaqMan assay. In addition, unconditioned logistic regression analysis was performed, odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association between WDR4 gene SNPs and Wilms tumor susceptibility as well as the strength of the associations. We found that only the rs6586250 C>T polymorphism was significantly associated with an increased risk of Wilms tumor (adjusted OR=2.99, 95% CI = 1.28-6.97, P = 0.011 for the rs6586250 TT genotype; adjusted OR=3.08, 95% CI = 1.33-7.17, P = 0.009 for the rs6586250 CC/CT genotype). Furthermore, the stratification analysis revealed that patients with the rs6586250 TT genotype and carriers with 1-5 risk genotypes exhibited statistically significant associations with increased Wilms tumor risk in specific subgroups. However, the rs2156315 CT/TT genotype was identified as having a protective effect against Wilms tumor in the age >18 months subgroup compared with the rs2156315 CC genotype. In brief, our study demonstrated that the rs6586250 C > T polymorphism of the WDR4 gene was significantly associated with Wilms tumor. This finding may contribute to the understanding of the genetic mechanism of Wilms tumor.
Collapse
Affiliation(s)
- Linqing Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Zhengtao Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jichen Ruan
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| |
Collapse
|
4
|
Zhang F, Chen L. Molecular Threat of Splicing Factor Mutations to Myeloid Malignancies and Potential Therapeutic Modulations. Biomedicines 2022; 10:biomedicines10081972. [PMID: 36009519 PMCID: PMC9405558 DOI: 10.3390/biomedicines10081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Splicing factors are frequently mutated in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations are presumed to contribute to oncogenic transformation, but the underlying mechanisms remain incompletely understood. While no specific treatment option is available for MDS/AML patients with spliceosome mutations, novel targeting strategies are actively explored, leading to clinical trials of small molecule inhibitors that target the spliceosome, DNA damage response pathway, and immune response pathway. Here, we review recent progress in mechanistic understanding of splicing factor mutations promoting disease progression and summarize potential therapeutic strategies, which, if successful, would provide clinical benefit to patients carrying splicing factor mutations.
Collapse
|