1
|
Xu Y, Gao J, Wang N, Zedenius J, Nilsson IL, Lui WO, Xu D, Juhlin CC, Larsson C, Mu N. BRAF-induced EHF Expression Affects TERT in Aggressive Papillary Thyroid Cancer. J Clin Endocrinol Metab 2025; 110:693-705. [PMID: 39183149 PMCID: PMC11834717 DOI: 10.1210/clinem/dgae589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/10/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
CONTEXT BRAFV600E and TERT promoter mutations in papillary thyroid carcinoma (PTC) have a synergistic effect on prognosis. This effect is believed to arise from MAPK activation triggered by BRAFV600E, leading to the upregulation of ETS transcription factors that bind to the mutant TERT promoter. OBJECTIVES To explore the role of ETS factors in relation to clinical features, BRAFV600E, and TERT promoter mutations in PTC. DESIGN Transcriptomic data for 28 ETS factors were analyzed in the PTC cohort of The Cancer Genome Atlas (n = 399) and subsequently validated in a local cohort (n = 93). In vitro experiments were performed to investigate the regulatory role in relation to BRAFV600E and TERT expression. RESULTS The Cancer Genome Atlas identified ETS1, ERG, FLI1, GABPA, EHF, ETV6, and SPDEF as differentially expressed genes between stages I + II and III + IV. In both cohorts, EHF was consistently associated with adverse clinical features, BRAFV600E and TERT promoter mutation/expression. Notably, in BRAFV600E mutated PTC, high EHF expression was associated with shorter disease-free survival. Cases harboring concurrent BRAFV600E, TERT promoter mutations, and high EHF expression exhibited the shortest disease-free survival. In cells harboring concurrent BRAFV600E and TERT promoter mutation, overexpression of EHF significantly increased TERT expression, whereas knockdown or pharmacological inhibition of BRAF significantly decreased both EHF and TERT expression. In addition, chromatin immunoprecipitation and quantitative PCR analysis suggested a potential binding of EHF in TERT promoter mutant cells but not in TERT promoter wild-type cells. CONCLUSION The ETS transcription factor EHF is associated with poor prognosis in PTC. This is potentially mediated by BRAF-induced upregulation of EHF, which in turn increases TERT expression in TERT promoter mutated cells.
Collapse
Affiliation(s)
- Yiyi Xu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 64, Sweden
| | - Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 64, Sweden
- The Cancer Hospital of the University of Chinese Academy of Sciences, (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Na Wang
- Department of Medicine-Huddinge, Karolinska Institutet, Stockholm SE-141 83, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm SE-171 64, Sweden
| | - Inga-Lena Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm SE-171 64, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 64, Sweden
| | - Dawei Xu
- Department of Medicine-Solna, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 64, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm SE-171 64, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 64, Sweden
| | - Ninni Mu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 64, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| |
Collapse
|
2
|
de Matos MDLG, Pinto M, Gonçalves A, Canberk S, Bugalho MJM, Soares P. Insights in biomarkers complexity and routine clinical practice for the diagnosis of thyroid nodules and cancer. PeerJ 2025; 13:e18801. [PMID: 39850836 PMCID: PMC11756370 DOI: 10.7717/peerj.18801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Background The differential diagnosis between benign and malignant thyroid nodules continues to be a major challenge in clinical practice. The rising incidence of thyroid neoplasm and the low incidence of aggressive thyroid carcinoma, urges the exploration of strategies to improve the diagnostic accuracy in a pre-surgical phase, particularly for indeterminate nodules, and to prevent unnecessary surgeries. Only in 2022, the 5th WHO Classification of Endocrine and Neuroendocrine Tumors, and in 2023, the 3rd Bethesda System for Reporting Thyroid Cytopathology and the European Thyroid Association included biomarkers in their guidelines. In this review, we discuss the integration of biomarkers within the routine clinical practice for diagnosis of thyroid nodules and cancer. Methodology The literature search for this review was performed through Pub Med, Science Direct, and Google Scholar. We selected 156 publications with significant contributions to this topic, with the majority (86, or 55.1%) published between January 2019 and March 2024, including some publications from our group during those periods. The inclusion criteria were based on articles published in recognized scientific journals with high contributions to the proposed topic. We excluded articles not emphasizing molecular biomarkers in refine the pre-surgical diagnosis of thyroid nodules. Results We explored genetic biomarkers, considering the division of thyroid neoplasm into BRAF-like tumor and RAS-like tumor. The specificity of BRAF mutation in the diagnosis of papillary thyroid carcinoma (PTC) is nearly 100% but its sensitivity is below 35%. RAS mutations are found in a broad spectrum of thyroid neoplasm, from benign to malignant follicular-patterned tumors, but do not increase the ability to distinguish benign from malignant lesions. The overexpression of miRNAs is correlated with tumor aggressiveness, high tumor node metastasis (TMN) stage, and recurrence, representing a real signature of thyroid cancer, particularly PTC. In addition, associations between the expression levels of selected miRNAs and the presence of specific genetic mutations have been related with aggressiveness and worse prognosis. Conclusions The knowledge of genetic and molecular biomarkers has achieved a high level of complexity, and the difficulties related to its applicability determine that their implementation in clinical practice is not yet a reality. More studies with larger series are needed to optimize their use in routine practice. Additionally, the improvement of new techniques, such as liquid biopsy and/or artificial intelligence, may be the future for a better understanding of molecular biomarkers in thyroid nodular disease.
Collapse
Affiliation(s)
- Maria de Lurdes Godinho de Matos
- Department of Endocrinology, Diabetes and Metabolism, Hospital Curry Cabral, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, Lisbon, Portugal
| | - Mafalda Pinto
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
| | - Ana Gonçalves
- Department of Pathology, Unidade Local de Saúde São João, Porto, Portugal
| | - Sule Canberk
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
| | - Maria João Martins Bugalho
- Department of Endocrinology, Hospital de Santa Maria, Unidade Local de Saúde Santa Maria; Medical Faculty, University of Lisbon, Lisbon, Portugal
| | - Paula Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Li S, Hu G, Chen Y, Sang Y, Tang Q, Liu R. TERT upstream promoter methylation regulates TERT expression and acts as a therapeutic target in TERT promoter mutation-negative thyroid cancer. Cancer Cell Int 2024; 24:271. [PMID: 39097722 PMCID: PMC11297792 DOI: 10.1186/s12935-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND DNA hypermethylation and hotspot mutations were frequently observed in the upstream and core promoter of telomerase reverse transcriptase (TERT), respectively, and they were associated with increased TERT expression and adverse clinical outcomes in thyroid cancer. In TERT promoter mutant cancer cells, the hypomethylated TERT mutant allele was active and the hypermethylated TERT wild-type allele was silenced. However, whether and how the upstream promoter methylation regulates TERT expression in TERT mutation-negative cells were largely unknown. METHODS DNA demethylating agents 5-azacytidine and decitabine and a genomic locus-specific demethylation system based on dCas9-TET1 were used to assess the effects of TERT upstream promoter methylation on TERT expression, cell growth and apoptosis of thyroid cancer cells. Regulatory proteins binding to TERT promoter were identified by CRISPR affinity purification in situ of regulatory elements (CAPTURE) combined with mass spectrometry. The enrichments of selected regulatory proteins and histone modifications were evaluated by chromatin immunoprecipitation. RESULTS The level of DNA methylation at TERT upstream promoter and expression of TERT were significantly decreased after treatment with 5-azacytidine or decitabine in TERT promoter wild-type thyroid cancer cells. Genomic locus-specific demethylation of TERT upstream promoter induced TERT downregulation, along with cell apoptosis and growth inhibition. Consistently, demethylating agents sharply inhibited the growth of thyroid cancer cells harboring hypermethylated TERT but had little effect on cells with TERT hypomethylation. Moreover, we identified that the chromatin remodeling protein CHD4 binds to methylated TERT upstream promoter and promotes its transcription by suppressing the enrichment of H3K9me3 and H3K27me3 at TERT promoter. CONCLUSIONS This study uncovered the mechanism of promoter methylation mediated TERT activation in TERT promoter mutation-negative thyroid cancer cells and indicated TERT upstream promoter methylation as a therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Shiyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Guanghui Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Qin Tang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Landa I, Cabanillas ME. Genomic alterations in thyroid cancer: biological and clinical insights. Nat Rev Endocrinol 2024; 20:93-110. [PMID: 38049644 DOI: 10.1038/s41574-023-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Tumours can arise from thyroid follicular cells if they acquire driver mutations that constitutively activate the MAPK signalling pathway. In addition, a limited set of additional mutations in key genes drive tumour progression towards more aggressive and less differentiated disease. Unprecedented insights into thyroid tumour biology have come from the breadth of thyroid tumour sequencing data from patients and the wide range of mutation-specific mechanisms identified in experimental models, in combination with the genomic simplicity of thyroid cancers. This knowledge is gradually being translated into refined strategies to stratify, manage and treat patients with thyroid cancer. This Review summarizes the biological underpinnings of the genetic alterations involved in thyroid cancer initiation and progression. We also provide a rationale for and discuss specific examples of how to implement genomic information to inform both recommended and investigational approaches to improve thyroid cancer prognosis, redifferentiation strategies and targeted therapies.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Li S, Xue J, Jiang K, Chen Y, Zhu L, Liu R. TERT promoter methylation is associated with high expression of TERT and poor prognosis in papillary thyroid cancer. Front Oncol 2024; 14:1325345. [PMID: 38313800 PMCID: PMC10834694 DOI: 10.3389/fonc.2024.1325345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
The telomerase reverse transcriptase (TERT) is overexpressed and associated with poor prognosis in papillary thyroid cancer (PTC), the most common subtype of thyroid cancer. The overexpression of TERT in PTC was partially attributed to transcriptional activation by two hotspot mutations in the core promoter region of this gene. As one of the major epigenetic mechanisms of gene expression regulation, DNA methylation has been proved to regulate several tumor-related genes in PTC. However, the association of TERT promoter DNA methylation with TERT expression and PTC progression is still unclear. By treating PTC cell lines with demethylating agent decitabine, we found that the TERT promoter methylation and the genes' expression were remarkably decreased. Consistently, PTC patients with TERT hypermethylation had significantly higher TERT expression than patients with TERT hypomethylation. Moreover, TERT hypermethylated patients showed significant higher rates of poor clinical outcomes than patients with TERT hypomethylation. Results from the cox regression analysis showed that the hazard ratios (HRs) of TERT hypermethylation for overall survival, disease-specific survival, disease-free interval (DFI) and progression-free interval (PFI) were 4.81 (95% CI, 1.61-14.41), 8.28 (95% CI, 2.14-32.13), 3.56 (95% CI, 1.24-10.17) and 3.32 (95% CI, 1.64-6.71), respectively. The HRs for DFI and PFI remained significant after adjustment for clinical risk factors. These data suggest that promoter DNA methylation upregulates TERT expression and associates with poor clinical outcomes of PTC, thus holds the potential to be a valuable prognostic marker for PTC risk stratification.
Collapse
Affiliation(s)
- Shiyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Landa I, Thornton CE, Xu B, Haase J, Krishnamoorthy GP, Hao J, Knauf JA, Herbert ZT, Martínez P, Blasco MA, Ghossein R, Fagin JA. Telomerase Upregulation Induces Progression of Mouse BrafV600E-Driven Thyroid Cancers and Triggers Nontelomeric Effects. Mol Cancer Res 2023; 21:1163-1175. [PMID: 37478162 PMCID: PMC11193891 DOI: 10.1158/1541-7786.mcr-23-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a noncoding region. TERT promoter mutations (TPM) are biomarkers of poor prognosis in cancer, including thyroid tumors. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert-123C>T) and crossed it with thyroid-specific BrafV600E-mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all BrafV600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of BrafV600E+Tert-123C>T and BrafV600E+K5-Tert mice progressed to poorly differentiated cancers at week 20, respectively. Tert-upregulated tumors showed increased mitosis and necrosis in areas of solid growth, and older animals displayed anaplastic-like features, that is, spindle cells and macrophage infiltration. Murine TPM increased Tert transcription in vitro and in vivo, but temporal and intratumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine, and chemokine signaling, were overactivated. These models constitute useful preclinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs. IMPLICATIONS Telomerase-driven cancer progression activates pathways that can be dissected and perhaps therapeutically exploited.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Caitlin E.M. Thornton
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob Haase
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jingzhu Hao
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Zachary T. Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Tu KJ, Stewart CE, Hendrickson PG, Regal JA, Kim SY, Ashley DM, Waitkus MS, Reitman ZJ. Pooled genetic screens to identify vulnerabilities in TERT-promoter-mutant glioblastoma. Oncogene 2023; 42:3274-3286. [PMID: 37741952 PMCID: PMC10615780 DOI: 10.1038/s41388-023-02845-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Pooled genetic screens represent a powerful approach to identify vulnerabilities in cancer. Here we used pooled CRISPR/Cas9-based approaches to identify vulnerabilities associated with telomerase reverse transcriptase (TERT) promoter mutations (TPMs) found in >80% of glioblastomas. We first developed a platform to detect perturbations that cause long-term growth defects in a TPM-mutated glioblastoma cell line. However, we could not detect dependencies on either TERT itself or on an E-twenty six transcription (ETS) factor known to activate TPMs. To explore this finding, we cataloged TPM status for 441 cell lines and correlated this with genome-wide screening data. We found that TPM status was not associated with differential dependency on TERT, but that E-twenty six (ETS) transcription factors represent key dependencies in both TPM+ and TPM- lines. Further, we found that TPMs are associated with expression of gene programs regulated by a wide array of ETS-factors in both cell lines and primary glioblastoma tissues. This work contributes a unique TPM cell line reagent, establishes TPM status for many deeply-profiled cell lines, and catalogs TPM-associated vulnerabilities. The results highlight challenges in executing genetic screens to detect TPM-specific vulnerabilities, and suggest redundancy in the genetic network that regulates TPM function with therapeutic implications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Connor E Stewart
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Peter G Hendrickson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David M Ashley
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Matthew S Waitkus
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA.
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 2023; 23:631-650. [PMID: 37438605 PMCID: PMC10763075 DOI: 10.1038/s41568-023-00598-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.
Collapse
Affiliation(s)
- James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Leandro-García LJ, Landa I. Mechanistic Insights of Thyroid Cancer Progression. Endocrinology 2023; 164:bqad118. [PMID: 37503738 PMCID: PMC10403681 DOI: 10.1210/endocr/bqad118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Differentiated thyroid cancers (DTCs) are primarily initiated by mutations that activate the MAPK signaling cascade, typically at BRAF or RAS oncoproteins. DTCs can evolve to more aggressive forms, specifically, poorly differentiated (PDTC) and anaplastic thyroid cancers (ATC), by acquiring additional genetic alterations which deregulate key pathways. In this review, we focused on bona fide mutations involved in thyroid cancer progression for which consistent mechanistic data exist. Here we summarized the relevant literature, spanning approximately 2 decades, highlighting genetic alterations that are unquestionably enriched in PDTC/ATC. We describe the relevant functional data obtained in multiple in vitro and in vivo thyroid cancer models employed to study genetic alterations in the following genes and functional groups: TP53, effectors of the PI3K/AKT pathway, TERT promoter, members of the SWI/SNF chromatin remodeling complex, NF2, and EIF1AX. In addition, we briefly discuss other genetic alterations that are selected in aggressive thyroid tumors but for which mechanistic data is still either limited or nonexistent. Overall, we argue for the importance conveyed by preclinical studies for the clinical translation of genomic knowledge of thyroid cancers.
Collapse
Affiliation(s)
- Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Landa I. InTERTwined: how TERT promoter mutations impact BRAF V600E-driven thyroid cancers. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 30:100460. [PMID: 37576936 PMCID: PMC10419322 DOI: 10.1016/j.coemr.2023.100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Thyroid cancers are often initiated by the acquisition of a BRAFV600E mutation. BRAFV600E-driven thyroid tumors display a wide range of behaviors, from the slow-growing papillary carcinomas to the highly aggressive anaplastic. Mutations in the promoter of TERT (telomerase reverse transcriptase) gene were discovered a decade ago and identified as prevalent events in thyroid cancers. Multiple studies showed that TERT promoter mutations, particularly when co-occurring with BRAFV600E, are markers of poor prognosis across thyroid cancer subtypes, and can be implemented for routine clinical stratification. Mechanistically, TERT promoter mutations reactivate telomerase expression via the differential recruitment of transcriptional complexes. Re-expression of TERT impacts tumor biology, plausibly via both the well-known function of telomerase maintaining telomeres and by affecting other cancer-relevant processes.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Landa I, Thornton CEM, Xu B, Haase J, Krishnamoorthy GP, Hao J, Knauf JA, Herbert ZT, Blasco MA, Ghossein R, Fagin JA. Telomerase reactivation induces progression of mouse Braf V600E -driven thyroid cancers without telomere lengthening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525280. [PMID: 36747657 PMCID: PMC9900760 DOI: 10.1101/2023.01.24.525280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caitlin EM Thornton
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob Haase
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jingzhu Hao
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Knauf
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA, USA
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Yuan X, Yuan H, Zhang N, Liu T, Xu D. Thyroid carcinoma-featured telomerase activation and telomere maintenance: Biology and translational/clinical significance. Clin Transl Med 2022; 12:e1111. [PMID: 36394204 PMCID: PMC9670192 DOI: 10.1002/ctm2.1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Telomerase is a ribonucleoprotein complex consisting of a catalytic component telomerase reverse transcriptase (TERT), internal RNA template and other co-factors, and its essential function is to synthesize telomeric DNA, repetitive TTAGGG sequences at the termini of linear chromosomes. Telomerase is silent in normal human follicular thyroid cells, primarily due to the TERT gene being tightly repressed. During the development and progression of thyroid carcinomas (TCs), TERT induction and telomerase activation is in general required to maintain telomere length, thereby conferring TC cells with immortal and aggressive phenotypes. METHODS The genomic alterations of the TERT loci including TERT promoter's gain-of-function mutations, copy number gain, fusion and rearrangements, have recently been identified in TCs as mechanisms to induce TERT expression and to activate telomerase. Importantly, numerous studies have consistently shown that TERT promoter mutations and TERT expression occur in all TC subtypes, and are robustly associated with TC malignancy, aggressiveness, treatment failure and poor outcomes. Therefore, the assessment of TERT promoter mutations and TERT expression is highly valuable in TC diagnostics, prognosis, treatment decision, and follow-up design. In addition, the TERT promoter is frequently hypermethylated in TC cells and tumors, which is required to activate TERT transcription and telomerase. Dysregulation of other components in the telomerase complex similarly upregulate telomerase. Moreover, shortened telomeres lead to altered gene expression and metabolism, thereby actively promoting TC aggressiveness. Here we summarize recent findings in TCs to provide the landscape of TC-featured telomere/telomerase biology and discuss underlying implications in TC precision medicine. CONCLUSION Mechanistic insights into telomerase activation and TERT induction in TCs are important both biologically and clinically. The TERT gene aberration and expression-based molecular classification of TCs is proposed, and for such a purpose, the standardization of the assay and evaluation system is required. Moreover, the TERT-based system and 2022 WHO TC classification may be combined to improve TC care.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Laboratory Animal CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Huiyang Yuan
- Department of UrologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Ning Zhang
- Department of Breast SurgeryGeneral Surgery, Qilu Hospital of Shandong UniversityJinanChina
| | - Tiantian Liu
- Department of PathologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Dawei Xu
- Department of MedicineDivision of HematologyBioclinicum and Center for Molecular Medicine (CMM)Karolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
13
|
Landa I. Advances in Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14122908. [PMID: 35740572 PMCID: PMC9221251 DOI: 10.3390/cancers14122908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
"Thyroid cancer" encompasses a heterogeneous group of tumors that range from the predominant papillary thyroid cancer (PTC) subtype, which shows excellent survival rates, to the poorly differentiated (PDTC) and anaplastic thyroid cancer (ATC) forms, accounting for most of the disease-related morbidity and mortality [...].
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|