1
|
Yang YJ, Chen XE, Zhou XC, Liang FX. Mesenchymal stem cell-derived extracellular vesicles: A promising therapeutic strategy in diabetic osteoporosis. World J Diabetes 2024; 15:2399-2403. [PMID: 39676814 PMCID: PMC11580584 DOI: 10.4239/wjd.v15.i12.2399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Diabetic osteoporosis (DOP) is a serious complication of diabetes mellitus. It is urgent to explore efficient clinical treatment strategies for DOP. It has been found that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), as an emerging cell-free therapy, show great potential in DOP treatment. MSC-EVs can effectively promote bone formation, inhibit bone resorption, and modulate the inflammatory microenvironment by delivering cargoes of microRNAs, long non-coding RNAs, and proteins to target cells, thereby ameliorating bone loss in DOP. However, there are limited reports on the treatment of DOP with MSC-EVs. To evoke more attention to this potential strategy, this article summarised the extant literature on MSC-EVs for DOP to provide new directions for further research and to promote the application of MSC-EVs in the clinical management of DOP.
Collapse
Affiliation(s)
- Ya-Jing Yang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Xi-Er Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China
| | - Xu-Chang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Feng-Xia Liang
- Preventive Treatment of Acupuncture and Moxibustion of Hubei Provincial Collaborative Innovation Center, College of Acupuncture-Moxibustion and Orthopaedics of Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| |
Collapse
|
2
|
Zhang R, Tan Y, Liu M, Wang L. Lymph node metastasis of intrahepatic cholangiocarcinoma: the present and prospect of detection and dissection. Eur J Gastroenterol Hepatol 2024; 36:1359-1369. [PMID: 39475782 PMCID: PMC11527382 DOI: 10.1097/meg.0000000000002856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) ranks as the second most primary liver cancer that often goes unnoticed with a high mortality rate. Hepatectomy is the main treatment for ICC, but only 15% of patients are suitable for surgery. Despite advancements in therapeutic approaches, ICC has an unfavorable prognosis, largely due to lymph node metastasis (LNM) that is closely linked to the elevated recurrence rates. Consequently, the identification of precise and suitable techniques for the detection and staging of LNM assumes paramount importance for ICC therapy. While preoperative imaging plays a crucial role in ICC diagnosis, its efficacy in accurately diagnosing LNM remains unsatisfactory. The inclusion of lymph node dissection as part of the hepatectomy procedures is significant for the accurate pathological diagnosis of LNM, although it continues to be a topic of debate. The concept of sentinel lymph node in ICC has presented a novel and potentially valuable approach for diagnosing LNM. This review aims to explore the current state and prospects of LNM in ICC, offering a promising avenue for enhancing the clinical diagnosis and treatment of ICC to improve patient prognosis.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
3
|
Rarokar N, Yadav S, Saoji S, Bramhe P, Agade R, Gurav S, Khedekar P, Subramaniyan V, Wong LS, Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int J Pharm X 2024; 7:100231. [PMID: 38322276 PMCID: PMC10844979 DOI: 10.1016/j.ijpx.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Over the last two decades, researchers have paid more attention to magnetic nanosystems due to their wide application in diverse fields. The metal nanomaterials' antimicrobial and biocidal properties make them an essential nanosystem for biomedical applications. Moreover, the magnetic nanosystems could have also been used for diagnosis and treatment because of their magnetic, optical, and fluorescence properties. Superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) are the most widely used magnetic nanosystems prepared by a simple process. By surface modification, researchers have recently been working on conjugating metals like silica, copper, and gold with magnetic nanosystems. This hybridization of the nanosystems modifies the structural characteristics of the nanomaterials and helps to improve their efficacy for targeted drug and gene delivery. The hybridization of metals with various nanomaterials like micelles, cubosomes, liposomes, and polymeric nanomaterials is gaining more interest due to their nanometer size range and nontoxic, biocompatible nature. Moreover, they have good injectability and higher targeting ability by accumulation at the target site by application of an external magnetic field. The present article discussed the magnetic nanosystem in more detail regarding their structure, properties, interaction with the biological system, and diagnostic applications.
Collapse
Affiliation(s)
- Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna MIDC, Nagpur 440016, India
| | - Sakshi Yadav
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Pratiksha Bramhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Rishabh Agade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403 001, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zuben de Valega Negrão CV, Cerize NN, Silva Justo-Junior AD, Liszbinski RB, Meneguetti GP, Araujo L, Rocco SA, Almeida Gonçalves KD, Cornejo DR, Leo P, Perecin C, Adamoski D, Gomes Dias SM. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification. Nanomedicine (Lond) 2024; 19:231-254. [PMID: 38284384 DOI: 10.2217/nnm-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 μg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.
Collapse
Affiliation(s)
- Cyro von Zuben de Valega Negrão
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Natália Np Cerize
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Amauri da Silva Justo-Junior
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Raquel Bester Liszbinski
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Giovanna Pastore Meneguetti
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Larissa Araujo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Daniel R Cornejo
- Department of Materials & Mechanics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Patrícia Leo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Caio Perecin
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Sandra M Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Carrese B, Cavallini C, Armanetti P, Silvestri B, Calì G, Luciani G, Sanità G, Menichetti L, Lamberti A. Hybrid Nanoparticle-Assisted Chemo-Photothermal Therapy and Photoacoustic Imaging in a Three-Dimensional Breast Cancer Cell Model. Int J Mol Sci 2023; 24:17374. [PMID: 38139203 PMCID: PMC10743567 DOI: 10.3390/ijms242417374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Bioinspired nanoparticles have recently been gaining attention as promising multifunctional nanoplatforms for therapeutic applications in cancer, including breast cancer. Here, the efficiency of the chemo-photothermal and photoacoustic properties of hybrid albumin-modified nanoparticles (HSA-NPs) loaded with doxorubicin was evaluated in a three-dimensional breast cancer cell model. The HSA-NPs showed a higher uptake and deeper penetration into breast cancer spheroids than healthy breast cell 3D cultures. Confocal microscopy revealed that, in tumour spheroids incubated with doxorubicin-loaded NPs for 16 h, doxorubicin was mainly localised in the cytoplasm, while a strong signal was detectable at the nuclear level after 24 h, suggesting a time-dependent uptake. To evaluate the cytotoxicity of doxorubicin-loaded NPs, tumour spheroids were treated for up to 96 h with increasing concentrations of NPs, showing marked toxicity only at the highest concentration of doxorubicin. When doxorubicin administration was combined with laser photothermal irradiation, enhanced cytotoxicity was observed at lower concentrations and incubation times. Finally, the photoacoustic properties of doxorubicin-loaded NPs were evaluated in tumour spheroids, showing a detectable signal increasing with NP concentration. Overall, our data show that the combined effect of chemo-photothermal therapy results in a shorter exposure time to doxorubicin and a lower drug dose. Furthermore, owing to the photoacoustic properties of the NPs, this nanoplatform may represent a good candidate for theranostic applications.
Collapse
Affiliation(s)
- Barbara Carrese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Chiara Cavallini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paolo Armanetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Brigida Silvestri
- Department of Civil, Construction and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Gaetano Calì
- Institute of Endocrinology and Molecular Oncology, National Research Council, 80131 Naples, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, 80131 Naples, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
Shahin RK, Elkady MA, Abulsoud AI, Abdelmaksoud NM, Abdel Mageed SS, El-Dakroury WA, Zewail MB, Elazazy M, Sobhy MH, Nomier Y, Elazazy O, Elballal MS, Mohammed OA, Midan HM, Elrebehy MA, Ziada BO, Doghish AS. miRNAs orchestration of gallbladder cancer - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154684. [PMID: 37454489 DOI: 10.1016/j.prp.2023.154684] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elazazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Sobhy
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Yousra Nomier
- Pharmacology Department, Pharmacy College, Jazan University, Saudi Arabia
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City, 11765 Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
7
|
Poles M, Meggiolaro A, Cremaschini S, Marinello F, Filippi D, Pierno M, Mistura G, Ferraro D. Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5399. [PMID: 37420565 PMCID: PMC10304097 DOI: 10.3390/s23125399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Magnetic beads (or particles) having a size between 1 and 5 µm are largely used in many biochemical assays devoted to both purification and quantification of cells, nucleic acids, or proteins. Unfortunately, the use of these beads within microfluidic devices suffers from natural precipitation because of their size and density. The strategies applied thus far to cells or polymeric particles cannot be extended to magnetic beads, mainly due to their magnetization and their higher densities. We report an effective shaking device capable of preventing the sedimentation of beads that are stored in a custom PCR tube. After the characterization of the operating principle, the device is validated for magnetic beads in droplets, leading to an equal distribution between the droplets, barely affecting their generation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| |
Collapse
|
8
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
9
|
Horstman-van de Loosdrecht MM, Kahmann T, Ludwig F, Alic L. Tuning Excitation Field Frequency for Magnetic Particle Sensing using Superparamagnetic Quantifier. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonlinear handheld detection of magnetic nanoparticles is used to assess the lymph node status of cancer patients. Joint sensitivity and resolving power of nonlinear handheld detection can be maximized by optimizing the frequency of the excitation field, which is strongly influenced
by Brownian and Néel relaxation. The characteristic frequency of magnetic nanoparticles that defines sensitivity and resolving power is usually assessed by AC susceptometry. In this study, we used SPaQ data to predict handheld detection performance for magnetic nanoparticles with various
particle sizes. SPaQ assesses dynamics by measuring the derivative of the magnetization originating from magnetic nanoparticles activated by an alternating excitation field. The ratio between the maximum signal difference and full-width-at-half-maximumis used to estimate the optimal excitation
frequency. Thereupon, it was shown that a particle with a combination of Brownian and Néel relaxation is superior in nonlinear handheld detection compared to Brownian or Néel only particles. Moreover, the optimal excitation frequency is generally established at a slightly higher
frequency compared to the characteristic frequency assessed by AC susceptometry. Consequently, this insight into the consequences of the dynamic behavior of magnetic nanoparticles under an alternating magnetic field enables the optimization of nonlinear handheld detection for specific clinical
applications.
Collapse
Affiliation(s)
| | - Tamara Kahmann
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, 38106, Braunschweig, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, 38106, Braunschweig, Germany
| | - Lejla Alic
- Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, 7500 AE, Ensche e, Netherlands
| |
Collapse
|
10
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hussain SI, Mair LO, Willis AJ, Papavasiliou G, Liu B, Weinberg IN, Engelhard HH. Parallel Multichannel Assessment of Rotationally Manipulated Magnetic Nanoparticles. Nanotechnol Sci Appl 2022; 15:1-15. [PMID: 35469141 PMCID: PMC9034901 DOI: 10.2147/nsa.s358931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Rotational manipulation of chains or clusters of magnetic nanoparticles (MNPs) offers a means for directed translation and payload delivery that should be explored for clinical use. Multiple MNP types are available, yet few studies have performed side-by-side comparisons to evaluate characteristics such as velocity, movement at a distance, and capacity for drug conveyance or dispersion. Purpose Our goal was to design, build, and study an electric device allowing simultaneous, multichannel testing (e.g., racing) of MNPs in response to a rotating magnetic field. We would then select the "best" MNP and use it with optimized device settings, to transport an unbound therapeutic agent. Methods A magnetomotive system was constructed, with a Helmholtz pair of coils on either side of a single perpendicular coil, on top of which was placed an acrylic tray having multiple parallel lanes. Five different MNPs were tested: graphene-coated cobalt MNPs (TurboBeads™), nickel nanorods, gold-iron alloy MNPs, gold-coated Fe3O4 MNPs, and uncoated Fe3O4 MNPs. Velocities were determined in response to varying magnetic field frequencies (5-200 Hz) and heights (0-18 cm). Velocities were normalized to account for minor lane differences. Doxorubicin was chosen as the therapeutic agent, assayed using a CLARIOstar Plus microplate reader. Results The MMS generated a maximal MNP velocity of 0.9 cm/s. All MNPs encountered a "critical" frequency at 20-30 Hz. Nickel nanorods had the optimal response based on tray height and were then shown to enable unbound doxorubicin dispersion along 10.5 cm in <30 sec. Conclusion A rotating magnetic field can be conveniently generated using a three-coil electromagnetic device, and used to induce rotational and translational movement of MNP aggregates over mesoscale distances. The responses of various MNPs can be compared side-by-side using multichannel acrylic trays to assess suitability for drug delivery, highlighting their potential for further in vivo applications.
Collapse
Affiliation(s)
- Syed I Hussain
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, IL, USA
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, USA
- NanoMagnetic Therapeutics Corp., Wilmette, IL, USA
| | - Lamar O Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD, USA
| | - Alexander J Willis
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Georgia Papavasiliou
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, USA
| | - Bing Liu
- IMRA America, Inc., Ann Arbor, MI, USA
| | | | - Herbert H Engelhard
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, IL, USA
- NanoMagnetic Therapeutics Corp., Wilmette, IL, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|