1
|
Buček S, Brožič A, Miceska S, Gašljević G, Kloboves Prevodnik V. Clustering Algorithm-Driven Detection of TRBC1-Restricted Clonal T-Cell Populations Produces Better Results than Manual Gating Analysis. Int J Mol Sci 2024; 26:170. [PMID: 39796028 PMCID: PMC11720138 DOI: 10.3390/ijms26010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Flow cytometric (FC) immunophenotyping and T-cell receptor (TCR) gene rearrangement studies are essential ancillary methods for the characterisation of T-cell lymphomas. Traditional manual gating and polymerase chain reaction (PCR)-based analyses can be labour-intensive, operator-dependent, and have limitations in terms of sensitivity and specificity. The objective of our study was to investigate the efficacy of the Phenograph and t-SNE algorithms together with an antibody specific for the TCR β-chain constant region 1 (TRBC1) to identify monoclonal T-cell populations. FC- and PCR-based clonality analyses were performed on 275 samples of T-cell lymphomas, B-cell lymphomas, and reactive lymphocytic proliferations. Monotypic T-cell populations were identified in 65.1% of samples by manual gating and 72.4% by algorithm-driven analysis, while PCR-based analysis detected clonal T cells in 68.0%. Of the 262 monotypic populations identified, 46.6% were classified as T-cell lymphomas and 53.4% as T-cell populations of uncertain significance (T-CUS). Algorithm-driven gating identified monotypic populations that were overlooked by manual gating or PCR-based methods. The study highlights the difficulty in distinguishing monotypic populations as T-cell lymphoma or T-CUS. Further research is needed to establish criteria for distinguishing between these populations and to improve FC diagnostic accuracy.
Collapse
MESH Headings
- Humans
- Algorithms
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/immunology
- Flow Cytometry/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Immunophenotyping/methods
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/pathology
- Cluster Analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- Simon Buček
- Department of Cytopathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia; (S.B.)
- Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| | - Andreja Brožič
- Department of Cytopathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia; (S.B.)
- Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| | - Simona Miceska
- Department of Cytopathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia; (S.B.)
- Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| | - Gorana Gašljević
- Department of Pathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Veronika Kloboves Prevodnik
- Department of Cytopathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia; (S.B.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Lu C, Li M, Fu J, Fan X, Zhong L, Li Y, Xi Q. cyTRBC1 evaluation rapidly identifies sCD3-negative peripheral T-cell lymphomas and reveals a novel type of sCD3-negative T-cell clone with uncertain significance. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:465-475. [PMID: 38818861 DOI: 10.1002/cyto.b.22182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
The flow cytometry-based evaluation of TRBC1 expression has been demonstrated as a rapid and specific method for detecting T-cell clones in sCD3-positive TCRαβ+ mature T-cell lymphoma. The aim of the study was to validate the utility of surface (s) TRBC1 and cytoplastic (cy) TRBC1 assessment in detecting clonality of sCD3-negative peripheral T-cell lymphomas (PTCLs), as well as exploring the existence and characteristics of sCD3-negative clonal T-cell populations with uncertain significance (T-CUS). Evaluation of sTRBC1 and cyTRBC1 were assessed on 61 samples from 37 patients with sCD3-negative PTCLs, including 26 angioimmunoblastic T-cell lymphoma (AITL) patients and 11 non-AITL patients. The sCD3-negative T-CUS were screened from 1602 patients without T-cell malignancy and 100 healthy individuals. Additionally, the clonality of cells was further detected through T-cell gene rearrangement analysis. We demonstrated the monotypic expression patterns of cyTRBC1 in all sCD3-negative PTCLs. Utilizing the cyTRBC1 evaluation assay, we identified a novel and rare subtype of sCD3-negative T-CUS for the first time among 13 out of 1602 (0.8%) patients without T-cell malignancy. The clonality of these cells was further confirmed through T-cell gene rearrangement analysis. This subset exhibited characteristics such as sCD3-cyCD3 + CD4 + CD45RO+, closely resembling AITL rather than non-AITL. Further analysis revealed that sCD3-negative T-CUS exhibited a smaller clone size in the lymph node and mass specimens compared to AITL patients. However, the clone size of sCD3-negative T-CUS was significantly lower than that of non-AITL patients in both specimen groups. In conclusion, we validated the diagnostic utility of cyTRBC1 in detecting sCD3-negative T-cell clonality, provided a comprehensive analysis of sCD3-negative T-CUS, and established a framework and provided valuable insights for distinguishing sCD3-negative T-CUS from sCD3-negative PTCLs based on their phenotypic properties and clone size.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyong Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Fu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoming Fan
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Xi
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Marchand T, Lamy T, Loughran TP. A modern view of LGL leukemia. Blood 2024; 144:1910-1923. [PMID: 38848524 DOI: 10.1182/blood.2023021790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
ABSTRACT Large granular lymphocytic leukemia (LGLL) is a rare lymphoproliferative chronic disorder characterized by expansion of either T or natural killer (NK) cytotoxic cells. In contrast to Epstein-Barr virus-induced aggressive NK-LGLL, chronic T-LGLL and NK-LGLL are indolent diseases affecting older patients with a median age of 66.5 years. LGLL is frequently associated with autoimmune disorders, most frequently rheumatoid arthritis. An auto-/alloantigen is tentatively implicated in disease initiation. Large granular lymphocyte expansion is then triggered by proinflammatory cytokines such as interleukin-15, macrophage inflammatory protein 1 (MIP-1), and RANTES (regulated upon activation, normal T cell expressed, and secreted). This proinflammatory environment contributes to deregulation of proliferative and apoptotic pathways. After the initial description of the JAK-STAT pathway signaling activation in the majority of patients, recurrent STAT3 gain-of-function mutations have been reported. The JAK-STAT pathway plays a key role in LGL pathogenesis by promoting survival, proliferation, and cytotoxicity. Several recent advances have been made toward understanding the molecular landscapes of T- and NK-LGLL, identifying multiple recurrent mutations affecting the epigenome, such as TET2 or KMT2D, and cross talk with the immune microenvironment, such as CCL22. Despite an indolent course, published series suggest that the majority of patients eventually need treatment. However, it is noteworthy that many patients may have a long-term observation period without ever requiring therapy. Treatments rely upon immunosuppressive drugs, namely cyclophosphamide, methotrexate, and cyclosporine. Recent advances have led to the development of targeted approaches, including JAK-STAT inhibitors, cytokine targeting, and hypomethylating agents, opening new developments in a still-incurable disease.
Collapse
Affiliation(s)
- Tony Marchand
- Department of Hematology, Rennes University Hospital, Rennes, France
- Faculty of Medicine, Rennes University, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Thierry Lamy
- Department of Hematology, Rennes University Hospital, Rennes, France
- Faculty of Medicine, Rennes University, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
4
|
Marchand T, Lamy T. The complex relationship between large granular lymphocyte leukemia and rheumatic disease. Expert Rev Clin Immunol 2024; 20:291-303. [PMID: 38105745 DOI: 10.1080/1744666x.2023.2292758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Large granular lymphocytic (LGL) leukemia is a rare lymphoproliferative disorder characterized by an expansion of clonal T or NK lymphocytes. Neutropenia-related infections represent the main clinical manifestation. Even if the disease follows an indolent course, most patients will ultimately need treatment in their lifetime. Interestingly, LGL leukemia is characterized by a high frequency of autoimmune disorders with rheumatoid arthritis being the most frequent. AREAS COVERED This review covers the pathophysiology, clinic-biological features and the advances made in the treatment of LGL leukemia. A special focus will be made on the similarities in the pathophysiology of LGL leukemia and the frequently associated rheumatic disorders. EXPERT OPINION Recent advances in the phenotypic and molecular characterization of LGL clones have uncovered the key role of JAK-STAT signaling in the pathophysiology linking leukemic cells expansion and autoimmunity. The description of the molecular landscape of T- and NK-LGL leukemia and the improved understanding of the associated rheumatic disorders open the way to the development of new targeted therapies effective on both conditions.
Collapse
Affiliation(s)
- Tony Marchand
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- Université Rennes 1, Rennes, France
- UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Thierry Lamy
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- Université Rennes 1, Rennes, France
- UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
- CIC 1414, Rennes, France
| |
Collapse
|
5
|
Castillo F, Morales C, Spralja B, Díaz-Schmidt J, Iruretagoyena M, Ernst D. Integration of T-cell clonality screening using TRBC-1 in lymphoma suspect samples by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:64-73. [PMID: 38010106 DOI: 10.1002/cyto.b.22147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of T-cell non-Hodgkin lymphomas (NHL) is challenging. The development of a monoclonal antibody specific for T-cell receptor β constant region 1 (TRBC1) provides an alternative to discriminate clonal T cells. The aim of this study was to evaluate the diagnostic potential of an anti-TRBC1 mAb for the identification of T-NHL. METHODS We performed a cross-sectional diagnostic analytic study of samples tested for lymphoma. All samples sent for lymphoma screening were first evaluated using the standard Euroflow LST, to which a second additional custom-designed T-cell clonality assessment tube was added CD45/TRBC1/CD2/CD7/CD4/TCRγδ/CD3. Flow cytometry reports were compared with morphological and molecular tests. RESULTS Fifty-nine patient samples were evaluated. Within the T-cell population, cut-off percentages in the CD4+ cells were from 29.4 to 54.6% and from 23.9 to 52.1% in CD8+ cells. Cut-off ratios in CD4+ T cells were from 0.33 to 1.1, and in CD8+ cells between 0.22 and 1.0. Using predefined normal cut-off values, 18 of 59 (30.5%) samples showed a restricted expression of TRBC1. A final diagnosis of a T-NHL was confirmed clinically and/or by histopathological studies in 15 of the 18 cases (83.3%). There were no cases of T-NHL by morphology/IHC with normal TRBC1 expression. Non-neoplastic patient samples behaved between predefined TRBC1 cut-off values. CONCLUSIONS Expression of TRBC1 provides a robust method for T-cell clonality assessment, with very high sensitivity and good correlation with complementary methods. TRBC1 can be integrated into routine lymphoma screening strategies via flow cytometry.
Collapse
Affiliation(s)
- Felipe Castillo
- Laboratorio Clínico, Clínica Alemana de Santiago, Vitacura, Chile
| | | | - Biserka Spralja
- Laboratorio Anatomía Patológica, Clínica Alemana de Santiago, Vitacura, Chile
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Joaquín Díaz-Schmidt
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Departamento de Oncología, Clínica Alemana de Santiago, Vitacura, Chile
| | - Mirentxu Iruretagoyena
- Laboratorio Clínico, Clínica Alemana de Santiago, Vitacura, Chile
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Daniel Ernst
- Laboratorio Clínico, Clínica Alemana de Santiago, Vitacura, Chile
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Departamento de Oncología, Clínica Alemana de Santiago, Vitacura, Chile
- Instituto de Ciencia e Innovación en Medicina (ICIM), Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
6
|
Liu J, Li M, Fu J, Dong M, Fan X, Zhong L, Xu G, Li Y, Xi Q. sTRBC1 and cyTRBC1 Expression Distinguishes Indolent T-Lymphoblastic Proliferations From T-Lymphoblastic Leukemia/Lymphoma. Am J Surg Pathol 2023; 47:1325-1331. [PMID: 37515427 DOI: 10.1097/pas.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Indolent T-lymphoblastic proliferation (iT-LBP) consists of a proliferation of non-neoplastic TdT + T cells in extrathymic tissues, requiring no treatment. However, due to overlapping clinical and histologic features, distinguishing iT-LBP from T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) can be challenging. Recently, flow cytometry-based evaluation of TRBC1 has been used to detect of T-cell clonality in TCRαβ + mature T-cell lymphomas and aid in the differential diagnosis between T-ALL and normal thymocytes. We present a case of iT-LBP with high-grade serous ovarian carcinoma (HGSOC). To investigate the potential utility of TRBC1 expression in distinguishing iT-LBP from T-ALL/LBL, we assessed both surface (s) and cytoplasmic (cy) TRBC1 expression patterns on blast cells from the patient with iT-LBP and HGSOC as well as 11 patients diagnosed with T-ALL/LBL. The results revealed that sTRBC1 and cyTRBC1 exhibited polytypic expression patterns in patient with iT-LBP and HGSOC, while cyTRBC1 showed monotypic expression in those with T-ALL/LBL. This suggests that evaluation of sTRBC1 and cyTRBC1 expression can serve as a simple, rapid, and effective approach to differentiate between iT-LBP and T-ALL/LBL.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|
7
|
Zeng X, Wang T, Kang Y, Bai G, Ma B. Evaluation of Molecular Simulations and Deep Learning Prediction of Antibodies' Recognition of TRBC1 and TRBC2. Antibodies (Basel) 2023; 12:58. [PMID: 37753972 PMCID: PMC10525649 DOI: 10.3390/antib12030058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
T cell receptor β-chain constant (TRBC) is a promising class of cancer targets consisting of two highly homologous proteins, TRBC1 and TRBC2. Developing targeted antibody therapeutics against TRBC1 or TRBC2 is expected to eradicate the malignant T cells and preserve half of the normal T cells. Recently, several antibody engineering strategies have been used to modulate the TRBC1 and TRBC2 specificity of antibodies. Here, we used molecular simulation and artificial intelligence methods to quantify the affinity difference in antibodies with various mutations for TRBC1 and TRBC2. The affinity of the existing mutants was verified by FEP calculations aided by the AI. We also performed long-time molecular dynamics simulations to reveal the dynamical antigen recognition mechanisms of the TRBC antibodies.
Collapse
Affiliation(s)
- Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (G.B.)
| | - Tianqun Wang
- Shanghai Digiwiser Biological Inc., Shanghai 200240, China; (T.W.); (Y.K.)
| | - Yue Kang
- Shanghai Digiwiser Biological Inc., Shanghai 200240, China; (T.W.); (Y.K.)
| | - Ganggang Bai
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (G.B.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (G.B.)
- Shanghai Digiwiser Biological Inc., Shanghai 200240, China; (T.W.); (Y.K.)
| |
Collapse
|
8
|
Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev 2023; 60:101058. [PMID: 36870881 DOI: 10.1016/j.blre.2023.101058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
9
|
Fioredda F, Skokowa J, Tamary H, Spanoudakis M, Farruggia P, Almeida A, Guardo D, Höglund P, Newburger PE, Palmblad J, Touw IP, Zeidler C, Warren AJ, Dale DC, Welte K, Dufour C, Papadaki HA. The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children: A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action. Hemasphere 2023; 7:e872. [PMID: 37008163 PMCID: PMC10065839 DOI: 10.1097/hs9.0000000000000872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.
Collapse
Affiliation(s)
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology, and Clinical Immunology, University Hospital Tübingen, Germany
| | - Hannah Tamary
- The Rina Zaizov Hematology/Oncology Division, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michail Spanoudakis
- Department of Hematology, Warrington and Halton Teaching Hospitals NHS foundation Trust, Warrington, United Kingdom
| | - Piero Farruggia
- Pediatric Onco-Hematology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Antonio Almeida
- Department of Hematology, Hospital da Luz Lisboa, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Daniela Guardo
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Petter Höglund
- Clinical Immunology and Transfusion Medicine Clinic, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan Palmblad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Ivo P. Touw
- Department of Hematology and Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Alan J. Warren
- Department of Hematology, University of Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom
| | | | - Karl Welte
- University Children’s Hospital Tübingen, Germany
| | - Carlo Dufour
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
- Department of Hematology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
10
|
Blomme S, Nollet F, Boeckx N, Cauwelier B, Snauwaert S, Emmerechts J. Diagnostic utility of the lymphoid screening tube supplemented with TRBC1 for the assessment of T-cell clonality. Int J Lab Hematol 2023. [PMID: 36856131 DOI: 10.1111/ijlh.14045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Flow cytometric panels for the investigation of lymphoproliferative disorders, such as the EuroFlow Lymphoid Screening Tube (LST), often fail to demonstrate T-cell clonality, as a suitable clonality marker was unavailable until recently. Aim of this study was to evaluate the added value of supplementing TRBC1, a flow cytometric T-cell clonality marker, to the LST. METHODS Flow cytometric analysis was performed on 830 routine samples referred to our lab for suspicion of hematological malignancy. T-cells with monotypic TRBC1-expression were additionally characterized with a 12-color T-cell tube and molecular T-cell receptor gamma gene rearrangement (TRG). RESULTS LST analysis revealed 97 (11.7%) samples with the presence of a monotypic T-cell population according to TRBC1, including 21 (2.5%) "high-count" (≥500 cells/μL blood or ≥15% of lymphocytes) and 76 (9.2%) "low-count" (<500 cells/μL blood or <15% of lymphocytes) populations. Clinical symptoms indicative for T-CLPD could be correlated to 11/21 "high-count" and 17/76 "low-count" monotypic T-cell populations. Molecular TRG analysis demonstrated a monoclonal result in 76% (16/21) of "high-count" samples and in 64% (42/66; 10 samples not tested) of "low-count" samples, but also in 9/20 samples with polytypic TRBC1 results. CONCLUSION Analysis of an LST tube supplemented with TRBC1 led to the detection of a high number of monotypic T-cell populations. The detection of numerous small monotypic T-cell populations raises the question of their clinical significance. A possible flowchart for assessment of these populations, based on the available literature, is proposed. Molecular TRG analysis is complementary and cannot be omitted from T-cell clonality assessment.
Collapse
Affiliation(s)
- S Blomme
- Department of Laboratory Medicine, AZ Sint-Jan Hospitals Brugge-Oostende, Brugge, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - F Nollet
- Department of Laboratory Medicine, AZ Sint-Jan Hospitals Brugge-Oostende, Brugge, Belgium
| | - N Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - B Cauwelier
- Department of Laboratory Medicine, AZ Sint-Jan Hospitals Brugge-Oostende, Brugge, Belgium
| | - S Snauwaert
- Department of Clinical Hematology, AZ Sint-Jan Hospitals Brugge-Oostende, Brugge, Belgium
| | - J Emmerechts
- Department of Laboratory Medicine, AZ Sint-Jan Hospitals Brugge-Oostende, Brugge, Belgium
| |
Collapse
|
11
|
Capone M, Peruzzi B, Palterer B, Bencini S, Sanna A, Puccini B, Nassi L, Salvadori B, Statello M, Carraresi A, Stefanelli S, Orazzini C, Minuti B, Caporale R, Annunziato F. Rapid evaluation of T cell clonality in the diagnostic work-up of mature T cell neoplasms: TRBC1-based flow cytometric assay experience. Transl Oncol 2022; 26:101552. [PMID: 36183675 PMCID: PMC9530610 DOI: 10.1016/j.tranon.2022.101552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
The identification of mature T cell neoplasms by flow cytometry is often challenging, due to overlapping features with reactive T cells and limitations of currently available T cell clonality assays. The description of an antibody specific for one of two mutually exclusive T cell receptor (TCR) β-chain constant regions (TRBC1) provides an opportunity to facilitate the detection of clonal TCRαβ+ T cells based on TRBC-restriction. Here we prospectively analyzed 14 healthy controls and 63 patients with the flow cytometry protocol currently used for suspected T cell neoplasm implemented with immunostaining targeting TRBC1. Specimens were firstly classified in 3 groups based on clinical records data, laboratory findings and immunophenotypic features. T cell clonality was assessed by TCR Vβ repertoire analysis and the new rapid TRBC1 assay. Results showed that TRBC1 unimodal expression was unequivocally associated with samples presenting with immunophenotypic aberrancies. Moreover, we demonstrated that the use of TRBC1 is useful in solving uncertain cases and confirmed the high sensitivity of the method in identifying small T cell clones of uncertain significance (T-CUS). Finally, we found a high degree of concordance (97%) comparing the currently available clonality assessment methods with the proposed new method. In conclusion, our results provided real-life evidence of the utility of TRBC1 introduction in the flow cytometric clonality evaluation for the routine diagnostic work-up of T cell neoplasms.
Collapse
Affiliation(s)
- Manuela Capone
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy; Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Benedetta Peruzzi
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Boaz Palterer
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Sara Bencini
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | | | | | - Luca Nassi
- Hematology, Unit AOU Careggi, Florence, Italy
| | | | - Marinella Statello
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Alessia Carraresi
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Stefania Stefanelli
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Chiara Orazzini
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | | | - Roberto Caporale
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Francesco Annunziato
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy; Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
All that glitters is not LGL Leukemia. Leukemia 2022; 36:2551-2557. [PMID: 36109593 DOI: 10.1038/s41375-022-01695-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
LGL disorders are rare hematological neoplasias with remarkable phenotypic, genotypic and clinical heterogeneity. Despite these constraints, many achievements have been recently accomplished in understanding the aberrant pathways involved in the LGL leukemogenesis. In particular, compelling evidence implicates STAT signaling as a crucial player of the abnormal cell survival. As interest increases in mapping hematological malignancies by molecular genetics, the relevance of STAT gene mutations in LGL disorders has emerged thanks to their association with discrete clinical features. STAT3 and STAT5b mutations are recognized as the most common gain-of-function genetic lesions up to now identified in T-LGL leukemia (T-LGLL) and are actually regarded as the hallmark of this disorder, also contributing to further refine its subclassification. However, from a clinical perspective, the relationships between T-LGLL and other borderline and overlapping conditions, including reactive cell expansions, clonal hematopoiesis of indeterminate potential (CHIP) and unrelated clonopathies are not fully established, sometimes making the diagnosis of T cell malignancy challenging. In this review specifically focused on the topic of clonality of T-LGL disorders we will discuss the rationale of the appropriate steps to aid in distinguishing LGLL from its mimics, also attempting to provide new clues to stimulate further investigations designed to move this field forward.
Collapse
|
13
|
Calabretto G, Attardi E, Gurnari C, Semenzato G, Voso MT, Zambello R. LGL Clonal Expansion and Unexplained Cytopenia: Two Clues Don't Make an Evidence. Cancers (Basel) 2022; 14:5236. [PMID: 36358655 PMCID: PMC9655579 DOI: 10.3390/cancers14215236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Clonal expansions of large granular lymphocytes (LGL) have been reported in a wide spectrum of conditions, with LGL leukemia (LGLL) being the most extreme. However, the boundaries between LGLL and LGL clones are often subtle, and both conditions can be detected in several clinical scenarios, particularly in patients with cytopenias. The intricate overlap of LGL clonal expansion with other disease entities characterized by unexplained cytopenias makes their classification challenging. Indeed, precisely assigning whether cytopenias might be related to inadequate hematopoiesis (i.e., LGL as a marginal finding) rather than immune-mediated mechanisms (i.e., LGLL) is far from being an easy task. As LGL clones acquire different pathogenetic roles and relevance according to their diverse clinical settings, their detection in the landscape of bone marrow failures and myeloid neoplasms has recently raised growing clinical interest. In this regard, the current availability of different diagnostic techniques, including next generation sequencing, shed light on the relationship between LGL clones and cytopenias, paving the way towards a better disease classification for precision medicine treatments. Herein, we discuss the clinical relevance of LGL clones in the diagnostic algorithm to be followed in patients presenting with cytopenias, offering a foundation for rational management approaches.
Collapse
Affiliation(s)
- Giulia Calabretto
- Department of Medicine, Padua University School of Medicine, Hematology Division, 35129 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Enrico Attardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Gianpietro Semenzato
- Department of Medicine, Padua University School of Medicine, Hematology Division, 35129 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Renato Zambello
- Department of Medicine, Padua University School of Medicine, Hematology Division, 35129 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| |
Collapse
|