1
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
2
|
Pighi C, Rotili A, De Luca M, Chiurchiù S, Calò Carducci FI, Rossetti C, Cifaldi L, Bei R, Caforio L, Bernardi S, Palma P, Amodio D. Characterization of Natural Killer Cell Profile in a Cohort of Infected Pregnant Women and Their Babies and Its Relation to CMV Transmission. Viruses 2024; 16:780. [PMID: 38793661 PMCID: PMC11125694 DOI: 10.3390/v16050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human cytomegalovirus (CMV) is a common herpesvirus causing lifelong latent infection in most people and is a primary cause of congenital infection worldwide. Given the role of NK cells in the materno-fetal barrier, we investigated peripheral blood NK cell behavior in the context of CMV infection acquired during pregnancy. We analyzed the NK phenotype and CD107a surface mobilization on PBMCs from CMV-transmitting and non-transmitting mothers and newborns with or without congenital infection. NK cells from non-transmitting mothers showed the typical phenotype of CMV-adaptive NK cells, characterized by higher levels of NKG2C, CD57, and KIRs, with reduced NKG2A, compared to transmitting ones. A significantly higher percentage of DNAM-1+, PD-1+, and KIR+NKG2A-CD57+PD-1+ CD56dim cells was found in the non-transmitting group. Accordingly, NK cells from congenital-CMV (cCMV)-infected newborns expressed higher levels of NKG2C and CD57, with reduced NKG2A, compared to non-congenital ones. Furthermore, they showed a significant expansion of CD56dim cells co-expressing NKG2C and CD57 or with a memory-like (KIR+NKG2A-CD57+NKG2C+) phenotype, as well as a significant reduction of the CD57-NKG2C- population. Degranulation assays showed a slightly higher CD107a geomean ratio in NK cells of mothers who were non-transmitting compared to those transmitting the virus. Our findings demonstrate that both CMV-transmitting mothers and cCMV newborns show a specific NK profile. These data can guide studies on predicting virus transmission from mothers and congenital infection in infants.
Collapse
Affiliation(s)
- Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
| | - Arianna Rotili
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- PhD Program in “Immunology, Molecular Medicine and Applied Biotechnologies”, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | - Sara Chiurchiù
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | | | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.C.); (R.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.C.); (R.B.)
| | - Leonardo Caforio
- Fetal Medicine and Surgery Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefania Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
3
|
Ramon-Luing LA, Flores-Gonzalez J, Angel García-Rojas L, Islas-Muñoz B, Volkow-Fernández P, Chavez-Galan L. Valganciclovir modulates the tumor necrosis factor axis molecules expression and CD4+ T-cell subsets in disseminated Kaposi Sarcoma patients. Clin Exp Immunol 2024; 215:190-201. [PMID: 37904542 PMCID: PMC10847826 DOI: 10.1093/cei/uxad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023] Open
Abstract
Valganciclovir (VGC) was used in a randomized clinical trial in patients with disseminated Kaposi Sarcoma/human immunodeficiency virus (DKS/HIV) as add-on therapy to evaluate the proinflammatory axis tumor necrosis factor (TNF) and its receptors (TNFRs) in T cells. Two treatment schedules were used: an experimental regime (ER) and a conventional treatment (CT). Mononuclear cells from patients with DKS/HIV were obtained at baseline (W0), 4 (W4), and 12 weeks (W12). Ten DKS/HIV patients received CT (antiretroviral therapy [cART]) and 10 ER (valganciclovir [VGC] initially, plus cART at the fourth week). HIV+ without KS and HIV- patient groups were included as controls. Correlation between T-cell subsets and HHV-8 viral load (VL) and a multivariate linear regression was performed. Data showed that DKS/HIV patients have an increased frequency of CD8+ T cells, which display a high density of CD8 expression. The ER scheme increases naïve and central memory CD4+ T cells at W4 and W12 of follow-up and induces a balanced distribution of activated CD4+ T-cell subsets. Moreover, ER decreases solTNFR2 since W4 and CT decreased the transmembrane forms of TNF axis molecules. Although CT induces a positive correlation between HHV-8 VL and TNFRs, the use of ER positively correlates with TNF and TNFRs levels through follow-up and a moderate correlation with HHV-8 VL and TNF soluble levels. In conclusion, VGC, as an add-on therapy in DKS/HIV patients, gradually modulates the activation of CD4+ T-cell subsets and the TNF/TNFRs axis, suggesting a better regulation of the inflammatory status.
Collapse
Affiliation(s)
- Lucero A Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Luis Angel García-Rojas
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Beda Islas-Muñoz
- Infectious Diseases Department, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|