1
|
Jimenez C, Baudrand R, Uslar T, Bulzico D. Perspective review: lessons from successful clinical trials and real-world studies of systemic therapy for metastatic pheochromocytomas and paragangliomas. Ther Adv Med Oncol 2024; 16:17588359241301359. [PMID: 39574494 PMCID: PMC11580098 DOI: 10.1177/17588359241301359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are orphan tumors with the potential to spread to distant organs such as the lymph nodes, the skeleton, the lungs, and the liver. These metastatic tumors exhibit high rates of morbidity and mortality due to their frequently large tumor burden, the progression of the disease, and the excessive secretion of catecholamines that lead to cardiovascular disease and gastrointestinal dysmotility. Several molecular drivers responsible for the development of PPGLs have been described over the last 30 years. Although therapeutic options are limited, substantial progress has been made in the recognition of effective systemic therapies for these tumors. Successful clinical trials with radiopharmaceuticals such as high-specific-activity meta-iodobenzylguanidine and tyrosine kinase inhibitors such as cabozantinib and sunitinib have been recently published. This review will discuss the results of these studies and their impact on current clinical practices. In addition, this review will provide valuable information on how to design clinical trials to treat patients with metastatic PPGLs with novel medications.
Collapse
Affiliation(s)
- Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA
| | - Rene Baudrand
- Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Thomas Uslar
- Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Daniel Bulzico
- Department of Nuclear Medicine and Endocrine Oncology, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Rozidi ARS, Djatisoesanto W, Ridholia. Neuroendocrine carcinoma of the adrenal gland: A rare case report and literature review. Radiol Case Rep 2024; 19:4408-4412. [PMID: 39185439 PMCID: PMC11343998 DOI: 10.1016/j.radcr.2024.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 08/27/2024] Open
Abstract
Neuroendocrine carcinoma (NEC) presence in the adrenal glands is rare. Neuroendocrine carcinoma manifests across a wide range of clinical presentations, from asymptomatic cases to those characterized by hormone overproduction or the tumor's mass effect. We report a 48-year-old male referred by a urology specialist with a chief complaint of right-sided back pain for the past 6 months accompanied by nausea, vomiting, and sharp stabbing headaches. The patient had a history of right adrenalectomy surgery. Elevated blood pressure of 150/110 mmHg, and no abnormalities found. The radiologist found a solid lesion and cyst at the lower pole of the right kidney and observed multiple recurrent tumors in the right adrenal on the MRI examination. The biopsy revealed poorly differentiated carcinoma and adrenocortical carcinoma tissue on the second biopsy 2 months later. The patient was diagnosed with neuroendocrine carcinoma; the patient underwent a biopsy guided by CT, followed by a pathological assessment (PA). The surgeon carried out the tumor removal surgery and performed an immunohistochemical (IHC) analysis. A 3-month follow-up is planned to evaluate the potential need for adjuvant chemotherapy. The case underscores the importance of accurate pathological diagnosis and multimodal management in recurrent adrenal tumors, particularly when considering NEC as a differential diagnosis.
Collapse
Affiliation(s)
- Achmad Romy Syahrial Rozidi
- Department of Urology, Dr. Soetomo Academic General Hospital, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Wahjoe Djatisoesanto
- Department of Urology, Dr. Soetomo Academic General Hospital, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ridholia
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
3
|
Varghese J, Skefos CM, Jimenez C. Metastatic pheochromocytoma and paraganglioma: Integrating tumor biology in clinical practice. Mol Cell Endocrinol 2024; 592:112344. [PMID: 39182716 DOI: 10.1016/j.mce.2024.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors derived from chromaffin cells in the autonomic nervous system. Depending on their location, these tumors are capable of excessive catecholamine production, which may lead to uncontrolled hypertension and other life-threatening complications. They are associated with a significant risk of metastatic disease and are often caused by an inherited germline mutation. Although surgery can cure localized disease and lead to remission, treatments for metastatic PPGL (mPPGL)-including chemotherapy, radiopharmaceutical agents, multikinase inhibitors, and immunotherapy used alone or in combination- aim to control tumor growth and limit organ damage. Substantial advances have been made in understanding hereditary and somatic molecular signaling pathways that play a role in tumor growth and metastasis. Treatment options for metastatic disease are rapidly evolving, and this paper aims to provide a brief overview of the management of mPPGL with a focus on therapy options.
Collapse
Affiliation(s)
- Jeena Varghese
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Catherine M Skefos
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
5
|
Xia F, Yang H, Wu H, Zhao B. Spindle component 25 predicts the prognosis and the immunotherapy response of cancers: a pan-cancer analysis. Sci Rep 2024; 14:8452. [PMID: 38605119 PMCID: PMC11009294 DOI: 10.1038/s41598-024-59038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Spindle component 25 (SPC25) is one of the four proteins that make up the nuclear division cycle 80 (NDC80) complex, the other three components being Ndc80p, Nuf2p, and spindle component 24. Deregulation of the components of this complex can lead to uncontrolled proliferation and reduced apoptosis. However, the prognostic and immunotherapeutic value of SPC25 in pan-cancer remains unclear. Data from the UCSC Xena, TIMER2.0, and TCGA were analyzed to investigate the overall differential expression of SPC25 across multiple cancer types. The survival prognosis, clinical features, and genetic changes of SPC25 were also evaluated. Finally, the relationship between SPC25 and immunotherapy response was further explored through Gene Set Enrichment Analysis, tumor microenvironment, and immune cell infiltration. The transcription and protein expression of SPC25 were significantly increased in most cancer types and had prognostic value for the survival of certain cancer patients such as ACC, CESC, KIRC, KIRP, LIHC, LUAD, MESO, STAD, THYM, and UCEC. In some cancer types, SPC25 expression was also markedly correlated with the TMB, MSI, and clinical characteristics. Gene Set Enrichment Analysis showed that SPC25 was significantly associated with immune-related pathways. In addition, it was also confirmed that the expression level of SPC25 was strongly correlated with immune cell infiltration, immune checkpoint genes, immune regulatory genes, Ferroptosis-related genes, Cuproptosis-related genes, and lactate metabolism-related genes. This study comprehensively explored the potential value of SPC25 as a prognostic and immunotherapeutic marker for pan-cancer, providing new direction and evidence for cancer therapy.
Collapse
Affiliation(s)
- Fengjuan Xia
- Department of Neurology of the First People's Hospital of Zhaoqing, China, Zhaoqing, 526000, China
| | - Haixia Yang
- Oncology Center of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Huangjian Wu
- Oncology Center of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Bo Zhao
- Center for Pain Medicine of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China.
| |
Collapse
|
6
|
Qin S, Xu Y, Yu S, Han W, Fan S, Ai W, Zhang K, Wang Y, Zhou X, Shen Q, Gong K, Sun L, Zhang Z. Molecular classification and tumor microenvironment characteristics in pheochromocytomas. eLife 2024; 12:RP87586. [PMID: 38407266 PMCID: PMC10942623 DOI: 10.7554/elife.87586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors that originate from chromaffin cells in the adrenal gland. However, the cellular molecular characteristics and immune microenvironment of PCCs are incompletely understood. Here, we performed single-cell RNA sequencing (scRNA-seq) on 16 tissues from 4 sporadic unclassified PCC patients and 1 hereditary PCC patient with Von Hippel-Lindau (VHL) syndrome. We found that intra-tumoral heterogeneity was less extensive than the inter-individual heterogeneity of PCCs. Further, the unclassified PCC patients were divided into two types, metabolism-type (marked by NDUFA4L2 and COX4I2) and kinase-type (marked by RET and PNMT), validated by immunohistochemical staining. Trajectory analysis of tumor evolution revealed that metabolism-type PCC cells display phenotype of consistently active metabolism and increased metastasis potential, while kinase-type PCC cells showed decreased epinephrine synthesis and neuron-like phenotypes. Cell-cell communication analysis showed activation of the annexin pathway and a strong inflammation reaction in metabolism-type PCCs and activation of FGF signaling in the kinase-type PCC. Although multispectral immunofluorescence staining showed a lack of CD8+ T cell infiltration in both metabolism-type and kinase-type PCCs, only the kinase-type PCC exhibited downregulation of HLA-I molecules that possibly regulated by RET, suggesting the potential of combined therapy with kinase inhibitors and immunotherapy for kinase-type PCCs; in contrast, the application of immunotherapy to metabolism-type PCCs (with antigen presentation ability) is likely unsuitable. Our study presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs, providing clues for potential therapeutic strategies to treat PCCs.
Collapse
Affiliation(s)
- Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Yawei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Shimiao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Wencong Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Shiheng Fan
- Shenzhen Institute of Ladder for Cancer ResearchShenzhenChina
| | - Wenxiang Ai
- Shenzhen Institute of Ladder for Cancer ResearchShenzhenChina
| | - Kenan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Yizhou Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Qi Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Kan Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| |
Collapse
|
7
|
You Z, He J, Gao Z. Comprehensive analysis of the role of cuproptosis-related genes in the prognosis and immune infiltration of adrenocortical Carcinoma. Heliyon 2024; 10:e23661. [PMID: 38187219 PMCID: PMC10767392 DOI: 10.1016/j.heliyon.2023.e23661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background Cuproptosis is a recently discovered form of nonapoptotic programmed cell death. However, no research on cuproptosis in the context of adrenocortical carcinoma has been conducted, and the prognostic value of assessing cuproptosis remains unclear. Methods In this study, we established comprehensive models to assess gene expression changes, mutation status, and prognosis prediction and developed a prognostic nomogram for cuproptosis-related genes. Using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Genotype-Tissue Expression (GTEx) databases, an analysis of 11 cuproptosis-related genes was performed. Additionally, a risk scoring method and nomogram were used to assess the relationships among cuproptosis-associated genes, transcript expression, clinical characteristics, and prognosis. The connections among tumors, immune checkpoints, and immune infiltration were also analyzed. Results The patterns observed in patients with adrenocortical carcinoma who were assessed using cuproptosis-associated risk scores provide useful information for understanding gene mutations, clinical outcomes, immune cell infiltration, and immune checkpoint analysis results. FDX1, LIPT1, MTF1, COX11, CYP2D6, DLAT, ATP7Band CDKN2A were differentially expressed in patients with adrenocortical carcinoma and normal controls. In addition, higher risk scores were significantly associated with poor overall survival and progression-free interval. The nomogram model subsequently developed to facilitate the clinical application of the analysis showed good predictive and calibration capabilities. GSE10927 and GSE33371 were used for independent cohort validation. Moreover, CDKN2A, FDX1, and other cuproptosis-related genes were significantly associated with immune infiltration and checkpoints. Conclusion We confirmed that our model had excellent predictive ability in patients with adrenocortical carcinoma. Therefore, an in-depth evaluation of patients using cuproptosis-related risk scores is clinically essential and can assist in therapy in the future.
Collapse
Affiliation(s)
- Zhiyuan You
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, 310005, China
| | - Jiqing He
- Department of Obstetrics, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310005, China
| | - Zhongming Gao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310005, China
| |
Collapse
|
8
|
Libé R, Huillard O. Adrenocortical carcinoma: Diagnosis, prognostic classification and treatment of localized and advanced disease. Cancer Treat Res Commun 2023; 37:100759. [PMID: 37690343 DOI: 10.1016/j.ctarc.2023.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with an estimated incidence of 0.7 to 2.0 cases per 1 million population per year in the United States. It is an aggressive cancer originating in the cortex of the adrenal gland with a poor prognosis. The 5-year survival rate is less than 15% among patients with metastatic disease. In this article, we review the epidemiology and pathogenesis of ACC, the diagnostic procedures, the prognostic classification of ACC, and the treatment options from localized and resectable forms to advanced disease detailing recent therapeutic developments such as immunotherapy and molecularly targeted therapy.
Collapse
Affiliation(s)
- Rossella Libé
- Service Endocrinologie, AP-HP, Hôpital Cochin, French National Network, ENDOCAN-COMETE, F-75014, Paris, France
| | - Olivier Huillard
- Institut du Cancer Paris CARPEM, AP-HP, Department of medical oncology, Hôpital Cochin, F-75014, Paris, France.
| |
Collapse
|
9
|
Yu A, Xu X, Pang Y, Li M, Luo J, Wang J, Liu L. PD-L1 Expression is Linked to Tumor-Infiltrating T-Cell Exhaustion and Adverse Pathological Behavior in Pheochromocytoma/Paraganglioma. J Transl Med 2023; 103:100210. [PMID: 37406931 DOI: 10.1016/j.labinv.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Pheochromocytoma/paraganglioma (PPGL) is an endocrine-related tumor associated with excessive catecholamine release and has limited treatment options once metastasis occurs. Although recent phase 2 clinical trials of immune checkpoint inhibitors in the treatment of PPGL have preliminarily shown promising results, the fundamentals of immunotherapy for PPGL have not yet been established. In the early research, using bulk RNA sequencing of tumor samples from 7 PPGL patients, we found that PPGL tumor tissues exhibited high PD-L1 mRNA expression compared with adjacent normal adrenal medulla tissues, and this was related to T-cell exhaustion biomarkers. To further validate the association, in this study (n = 60), we first stratified all PPGL samples according to PD-L1 expression as determined by immunohistochemical staining, and then subjected 23 fresh PPGL tumor samples from the cohort to a quantitative polymerase chain reaction (n = 16), flow cytometry (n = 7), and multiplex-immunofluorescence staining. Subsequently, we evaluated the pathological manifestations of all 60 PPGL tumor samples and analyzed the correlation among PD-L1 expression, adverse pathological behavior, various clinicopathological data, and genotypes in PPGL. The results showed that PD-L1-positive expression correlated with the exhaustion of tumor-infiltrating T cells, preoperative abnormal elevation of plasma norepinephrine, high Ki67 index, and adverse pathological behavior in PPGL but not with genetic mutation or metastatic disease, possibly due to the limitation of the small number of patients with metastatic disease (n = 4) in the study cohort. In conclusion, our findings reveal that PD-L1 expression is associated with T-cell exhaustion and adverse pathological behavior in PPGL. These results are expected to provide a new theoretical basis and clinical guidance for the treatment of PPGL.
Collapse
Affiliation(s)
- Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowen Xu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Junhang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Cha YJ, Koo JS. Expression of EMP 1, 2, and 3 in Adrenal Cortical Neoplasm and Pheochromocytoma. Int J Mol Sci 2023; 24:13016. [PMID: 37629198 PMCID: PMC10455306 DOI: 10.3390/ijms241613016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this study is to investigate the expression of the epithelial membrane proteins (EMP) 1, 2, and 3 in adrenal gland neoplasm and to explore the broader implications of this. Tissue microarrays were constructed for 132 cases of adrenal cortical neoplasms (ACN) (adrenal cortical adenoma (115 cases), and carcinoma (17 cases)) and 189 cases of pheochromocytoma. Immunohistochemical staining was performed to identify EMP 1, 2, and 3, and was compared with clinicopathological parameters. The H-score of EMP 3 (p < 0.001) was higher in pheochromocytoma when compared to that of ACN, and the H-score of EMP 1 (p < 0.001) and EMP 3 (p < 0.001) was higher in adrenal cortical carcinomas when compared to that of adrenal cortical adenomas. A higher EMP 1 H-score was observed in pheochromocytomas with a GAPP score ≥3 (p = 0.018). In univariate analysis, high levels of EMP 1 and EMP 3 expression in ACN were associated with shorter overall survival (p = 0.001). Differences were observed in the expression of EMPs between ACN and pheochromocytoma. EMPs are associated with malignant tumor biology in adrenal cortical neoplasm and pheochromocytoma, suggesting the role of a prognostic and/or predictive factor for EMPs in adrenal tumor.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea;
| |
Collapse
|
11
|
Warde KM, Smith LJ, Liu L, Stubben CJ, Lohman BK, Willett PW, Ammer JL, Castaneda-Hernandez G, Imodoye SO, Zhang C, Jones KD, Converso-Baran K, Ekiz HA, Barry M, Clay MR, Kiseljak-Vassiliades K, Giordano TJ, Hammer GD, Basham KJ. Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner. NATURE AGING 2023; 3:846-865. [PMID: 37231196 PMCID: PMC11534150 DOI: 10.1038/s43587-023-00420-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.
Collapse
Affiliation(s)
- Kate M Warde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lorenzo J Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lihua Liu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chris J Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brian K Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Parker W Willett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Julia L Ammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | | | - Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chenge Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kara D Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kimber Converso-Baran
- Frankel Cardiovascular Center Physiology and Phenotyping Core, University of Michigan, Ann Arbor, MI, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla Izmir, Turkey
| | - Marc Barry
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas J Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Carsote M, Turturea IF, Turturea MR, Valea A, Nistor C, Gheorghisan-Galateanu AA. Pathogenic Insights into DNA Mismatch Repair (MMR) Genes-Proteins and Microsatellite Instability: Focus on Adrenocortical Carcinoma and Beyond. Diagnostics (Basel) 2023; 13:diagnostics13111867. [PMID: 37296718 DOI: 10.3390/diagnostics13111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
DNA damage repair pathways, including mismatch repair (MMR) genes, are prone to carcinoma development in certain patients. The assessment of the MMR system is widely recognized as part of strategies concerning solid tumors (defective MMR cancers), especially MMR proteins (through immunohistochemistry), and molecular assays for microsatellite instability (MSI). We aim to highlight the status of MMR genes-proteins (including MSI) in the relationship with ACC (adrenocortical carcinoma) according to current knowledge. This is a narrative review. We included PubMed-accessed, full-length English papers published between January 2012 and March 2023. We searched studies on ACC patients for whom MMR status was assessed, respectively subjects harboring MMR germline mutations, namely Lynch syndrome (LS), who were diagnosed with ACC. MMR system assessments in ACCs involve a low level of statistical evidence. Generally, there are two main types of endocrine insights: 1. the role of MMR status as a prognostic marker in different endocrine malignancies (including ACC)-which is the topic of the present work, and 2. establishing the indication of immune checkpoint inhibitors (ICPIs) in selective, mostly highly aggressive, non-responsive to standard care forms upon MMR evaluation (which belongs to the larger chapter of immunotherapy in ACCs). Our one-decade, sample-case study (which, to our knowledge, it is the most comprehensive of its kind) identified 11 original articles (from 1 patient to 634 subjects per study diagnosed with either ACC or LS). We identified four studies published in 2013 and 2020 and two in 2021, three cohorts and two retrospective studies (the publication from 2013 includes a retrospective and a cohort distinct section). Among these four studies, patients already confirmed to have LS (N = 643, respective 135) were found to be associated with ACC (N = 3, respective 2), resulting in a prevalence of 0.0046%, with a respective of 1.4% being confirmed (despite not having a large amount of similar data outside these two studies). Studies on ACC patients (N = 364, respective 36 pediatric individuals, and 94 subjects with ACC) showed that 13.7% had different MMR gene anomalies, with a respective of 8.57% (non-germline mutations), while 3.2% had MMR germline mutations (N = 3/94 cases). Two case series included one family, with a respective four persons with LS, and each article introduced one case with LS-ACC. Another five case reports (between 2018 and 2021) revealed an additional five subjects (one case per paper) diagnosed with LS and ACC (female to male ratio of 4 to 1; aged between 44 and 68). Interesting genetic testing involved children with TP53-positive ACC and further MMR anomalies or an MSH2 gene-positive subject with LS with a concurrent germline RET mutation. The first report of LS-ACC referred for PD-1 blockade was published in 2018. Nevertheless, the use of ICPI in ACCs (as similarly seen in metastatic pheochromocytoma) is still limited. Pan-cancer and multi-omics analysis in adults with ACC, in order to classify the candidates for immunotherapy, had heterogeneous results, and integrating an MMR system in this larger and challenging picture is still an open issue. Whether individuals diagnosed with LS should undergo surveillance for ACC has not yet been proven. An assessment of tumor-related MMR/MSI status in ACC might be helpful. Further algorithms for diagnostics and therapy, also taking into consideration innovative biomarkers as MMR-MSI, are necessary.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011461 Bucharest, Romania
| | - Ionut Florin Turturea
- Department of Orthopedics and Traumatology, Cluj Emergency County Hospital, 400347 Cluj-Napoca, Romania
| | | | - Ana Valea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy & Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy & Thoracic Surgery Department, Dr. Carol Davila Central Emergency University Military Hospital, 050474 Bucharest, Romania
| | - Ancuta-Augustina Gheorghisan-Galateanu
- Department of Molecular and Cellular Biology, and Histology, Carol Davila University of Medicine and Pharmacy & Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011461 Bucharest, Romania
| |
Collapse
|
13
|
Celada L, Cubiella T, San-Juan-Guardado J, Gutiérrez G, Beiguela B, Rodriguez R, Poch M, Astudillo A, Grijalba A, Sánchez-Sobrino P, Tous M, Navarro E, Serrano T, Paja M, Valdés N, Chiara MD. Pseudohypoxia in paraganglioma and pheochromocytoma is associated with an immunosuppressive phenotype. J Pathol 2023; 259:103-114. [PMID: 36314599 PMCID: PMC10107524 DOI: 10.1002/path.6026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022]
Abstract
Metastatic pheochromocytoma and paraganglioma (PPGL) have poor prognosis and limited therapeutic options. The recent advent of immunotherapies showing remarkable clinical efficacies against various cancer types offers the possibility of novel opportunities also for metastatic PPGL. Most PPGLs are pathogenically linked to inactivating mutations in genes encoding different succinate dehydrogenase (SDH) subunits. This causes activation of the hypoxia-inducible factor 2 (HIF2)-mediated transcriptional program in the absence of decreased intratumoral oxygen levels, a phenomenon known as pseudohypoxia. Genuine hypoxia in a tumor creates an immunosuppressive tumor microenvironment. However, the impact of pseudohypoxia in the immune landscape of tumors remains largely unexplored. In this study, tumoral expression of programmed death-ligand 1 (PD-L1) and HIF2α and tumor infiltration of CD8 T lymphocytes (CTLs) were examined in PPGL specimens from 102 patients. We assessed associations between PD-L1, CTL infiltration, HIF2α expression, and the mutational status of SDH genes. Our results show that high PD-L1 expression levels in tumor cells and CTL tumor infiltration were more frequent in metastatic than nonmetastatic PPGL. However, this phenotype was negatively associated with SDH mutations and high HIF2α protein expression. These data were validated by analysis of mRNA levels of genes expressing PD-L1, CD8, and HIF2α in PPGL included in The Cancer Genome Atlas database. Further, PD-L1 and CD8 expression was lower in norepinephrine than epinephrine-secreting PPGL. This in silico analysis also revealed the low PD-L1 or CD8 expression levels in tumors with inactivating mutations in VHL or activating mutations in the HIF2α-coding gene, EPAS1, which, together with SDH-mutated tumors, comprise the pseudohypoxic molecular subtype of PPGL. These findings suggest that pseudohypoxic tumor cells induce extrinsic signaling toward the immune cells promoting the development of an immunosuppressive environment. It also provides compelling support to explore the differential response of metastatic PPGL to immune checkpoint inhibitors. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lucía Celada
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain.,CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain.,Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Tamara Cubiella
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain.,CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain.,Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | | | - Gala Gutiérrez
- Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Brenda Beiguela
- Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Raúl Rodriguez
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - María Poch
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Aurora Astudillo
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain
| | - Ana Grijalba
- Department of Clinical Analysis, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Paula Sánchez-Sobrino
- Department of Endocrinology and Nutrition, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Maria Tous
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Elena Navarro
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Teresa Serrano
- Department of Pathology, Hospital de Bellvitge, Barcelona, Spain
| | - Miguel Paja
- Department of Endocrinology and Nutrition, Hospital Universitario de Basurto, Bilbao, Spain
| | - Nuria Valdés
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain.,Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes, Gijón, Spain
| | - María-Dolores Chiara
- Institute of Sanitary Research of the Principado de Asturias, Oviedo, Spain.,CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain.,Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
14
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
15
|
Endocrine and Neuroendocrine Tumors: A Special Issue. Cancers (Basel) 2022; 14:cancers14204994. [DOI: 10.3390/cancers14204994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine and neuroendocrine tumors (NETs) represent a group of heterogeneous malignancies that have endocrine cell onset as a common denominator [...]
Collapse
|
16
|
Zhang C, Zeng Y, Guo X, Shen H, Zhang J, Wang K, Ji M, Huang S. Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker. Front Genet 2022; 13:923737. [PMID: 35991547 PMCID: PMC9388757 DOI: 10.3389/fgene.2022.923737] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background: The latest research identified cuproptosis as an entirely new mechanism of cell death. However, as a key regulator in copper-induced cell death, the prognostic and immunotherapeutic value of FDX1 in pan-cancer remains unclear. Methods: Data from the UCSC Xena, GEPIA, and CPTAC were analyzed to conduct an inquiry into the overall differential expression of FDX1 across multiple cancer types. The expression of FDX1 in GBM, LUAD and HCC cell lines as well as their control cell lines was verified by RT-QPCR. The survival prognosis, clinical features, and genetic changes of FDX1 were also evaluated. Finally, the relationship between FDX1 and immunotherapy response was further explored through Gene Set Enrichment Analysis enrichment analysis, tumor microenvironment, immune cell infiltration, immune gene co-expression and drug sensitivity analysis. Results: The transcription and protein expression of FDX1 were significantly reduced in most cancer types and had prognostic value for the survival of certain cancer patients such as ACC, KIRC, HNSC, THCA and LGG. In some cancer types, FDX1 expression was also markedly correlated with the clinical characteristics, TMB, MSI, and antitumor drug susceptibility or resistance of different tumors. Gene set enrichment analysis showed that FDX1 was significantly associated with immune-related pathways. Moreover, the expression level of FDX1 was confirmed to be strongly correlated with immune cell infiltration, immune checkpoint genes, and immune regulatory genes to a certain extent. Conclusion: This study comprehensively explored the potential value of FDX1 as a prognostic and immunotherapeutic marker for pan-cancer, providing new direction and evidence for cancer therapy.
Collapse
Affiliation(s)
- Chi Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Yuanxiao Zeng
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xiuchen Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Hangjing Shen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianhao Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Kaikai Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Mengmeng Ji
- Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengwei Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shengwei Huang,
| |
Collapse
|
17
|
Lin X, Gu Y, Su Y, Dong Y, Major P, Kapoor A, Tang D. Prediction of Adrenocortical Carcinoma Relapse and Prognosis with a Set of Novel Multigene Panels. Cancers (Basel) 2022; 14:cancers14112805. [PMID: 35681785 PMCID: PMC9179637 DOI: 10.3390/cancers14112805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Effective assessment of adrenocortical carcinoma (ACC) prognosis is critical in patient management. We report four novel and robust prognostic multigene panels. Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B predict ACC relapse at area under the curve (AUC) of 0.89, 0.79, 0.78, and 0.80, respectively, and fatality at AUC of 0.91, 0.88, 0.85, and 0.87, respectively. Among their 33 component genes, 31 are novel. They could be differentially expressed in ACCs from normal tissues, tumors with different severity (stages and lymph node metastasis), ACCs with TP53 mutations, and tumors with differentially expressed immune checkpoints (CTLA4, PD1, TGFBR1, and others). All panels correlate with reductions of ACC-associated CD8+ and/or NK cells. Furthermore, we provide the first evidence for the association of mesenchymal stem cells (MSCs) with ACC relapse (p = 2 × 10−6) and prognosis (p = 2 × 10−8). Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B correlate with MSC (spearman r ≥ 0.53, p ≤ 1.38 × 10−5). Sig27var25 and SigIQvar8 were derived from a prostate cancer (PC) and clear cell renal cell carcinoma (ccRCC) multigene signature, respectively; SigCmbnvar5 and SigCmbn_B are combinations of both panels, revealing close relationships of ACC with PC and ccRCC. The origin of these four panels from PC and ccRCC favors their prognostic potential towards ACC.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: (A.K.); (D.T.); Tel.: +1-905-522-1155 (ext. 35218) (A.K.); +1-905-522-1155 (ext. 35168) (D.T.)
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: (A.K.); (D.T.); Tel.: +1-905-522-1155 (ext. 35218) (A.K.); +1-905-522-1155 (ext. 35168) (D.T.)
| |
Collapse
|
18
|
Watts D, Jaykar MT, Bechmann N, Wielockx B. Hypoxia signaling pathway: A central mediator in endocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1103075. [PMID: 36699028 PMCID: PMC9868855 DOI: 10.3389/fendo.2022.1103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Adequate oxygen levels are essential for the functioning and maintenance of biological processes in virtually every cell, albeit based on specific need. Thus, any change in oxygen pressure leads to modulated activation of the hypoxia pathway, which affects numerous physiological and pathological processes, including hematopoiesis, inflammation, and tumor development. The Hypoxia Inducible Factors (HIFs) are essential transcription factors and the driving force of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase domain (PHDs) proteins are the true oxygen sensors that critically regulate this response. Recently, we and others have described the central role of the PHD/HIF axis in various compartments of the adrenal gland and its potential influence in associated tumors, including pheochromocytomas and paragangliomas. Here, we provide an overview of the most recent findings on the hypoxia signaling pathway in vivo, including its role in the endocrine system, especially in adrenal tumors.
Collapse
|