1
|
Adolph JE, Fleischhack G, Tschirner S, Rink L, Dittes C, Mikasch R, Dammann P, Mynarek M, Obrecht-Sturm D, Rutkowski S, Bison B, Warmuth-Metz M, Pietsch T, Pfister SM, Pajtler KW, Milde T, Kortmann RD, Dietzsch S, Timmermann B, Tippelt S. Radiotherapy for Recurrent Medulloblastoma in Children and Adolescents: Survival after Re-Irradiation and First-Time Irradiation. Cancers (Basel) 2024; 16:1955. [PMID: 38893076 PMCID: PMC11171022 DOI: 10.3390/cancers16111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) involving craniospinal irradiation (CSI) is important in the initial treatment of medulloblastoma. At recurrence, the re-irradiation options are limited and associated with severe side-effects. METHODS For pre-irradiated patients, patients with re-irradiation (RT2) were matched by sex, histology, time to recurrence, disease status and treatment at recurrence to patients without RT2. RESULTS A total of 42 pre-irradiated patients with RT2 were matched to 42 pre-irradiated controls without RT2. RT2 improved the median PFS [21.0 (CI: 15.7-28.7) vs. 12.0 (CI: 8.1-21.0) months] and OS [31.5 (CI: 27.6-64.8) vs. 20.0 (CI: 14.0-36.7) months]. Concerning long-term survival after ten years, RT2 only lead to small improvements in OS [8% (CI: 1.4-45.3) vs. 0%]. RT2 improved survival most without (re)-resection [PFS: 17.5 (CI: 9.7-41.5) vs. 8.0 (CI: 6.6-12.2)/OS: 31.5 (CI: 27.6-NA) vs. 13.3 (CI: 8.1-20.1) months]. In the RT-naïve patients, CSI at recurrence improved their median PFS [25.0 (CI: 16.8-60.6) vs. 6.6 (CI: 1.5-NA) months] and OS [40.2 (CI: 18.7-NA) vs. 12.4 (CI: 4.4-NA) months]. CONCLUSIONS RT2 could improve the median survival in a matched cohort but offered little benefit regarding long-term survival. In RT-naïve patients, CSI greatly improved their median and long-term survival.
Collapse
Affiliation(s)
- Jonas E. Adolph
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Sebastian Tschirner
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Lydia Rink
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Christine Dittes
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Ruth Mikasch
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45122 Essen, Germany;
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Denise Obrecht-Sturm
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (M.M.); (D.O.-S.); (S.R.)
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany;
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital of Bonn, 53105 Bonn, Germany;
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.M.P.); (K.W.P.)
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Kristian W. Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.M.P.); (K.W.P.)
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Till Milde
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Pediatric Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Rolf-Dieter Kortmann
- Department of Radio-Oncology, University Leipzig, 04129 Leipzig, Germany; (R.-D.K.); (S.D.)
| | - Stefan Dietzsch
- Department of Radio-Oncology, University Leipzig, 04129 Leipzig, Germany; (R.-D.K.); (S.D.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, 45122 Essen, Germany;
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, 45122 Essen, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45122 Essen, Germany; (G.F.); (S.T.); (L.R.); (C.D.); (S.T.)
| |
Collapse
|
2
|
Marabitti V, Giansanti M, De Mitri F, Gatto F, Mastronuzzi A, Nazio F. Pathological implications of metabolic reprogramming and its therapeutic potential in medulloblastoma. Front Cell Dev Biol 2022; 10:1007641. [PMID: 36340043 PMCID: PMC9627342 DOI: 10.3389/fcell.2022.1007641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-specific alterations in metabolism have been recognized to sustain the production of ATP and macromolecules needed for cell growth, division and survival in many cancer types. However, metabolic heterogeneity poses a challenge for the establishment of effective anticancer therapies that exploit metabolic vulnerabilities. Medulloblastoma (MB) is one of the most heterogeneous malignant pediatric brain tumors, divided into four molecular subgroups (Wingless, Sonic Hedgehog, Group 3 and Group 4). Recent progresses in genomics, single-cell sequencing, and novel tumor models have updated the classification and stratification of MB, highlighting the complex intratumoral cellular diversity of this cancer. In this review, we emphasize the mechanisms through which MB cells rewire their metabolism and energy production networks to support and empower rapid growth, survival under stressful conditions, invasion, metastasis, and resistance to therapy. Additionally, we discuss the potential clinical benefits of currently available drugs that could target energy metabolism to suppress MB progression and increase the efficacy of the current MB therapies.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Manuela Giansanti
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca De Mitri
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Gatto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angela Mastronuzzi
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Nazio
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Ren Z, Gao M, Jiang W. Prognostic role of NLGN2 and PTGDS in medulloblastoma based on gene expression omnibus. Am J Transl Res 2022; 14:3769-3782. [PMID: 35836891 PMCID: PMC9274574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Medulloblastoma (MB) is the most common intracranial malignant tumour in children, but genes and pathways involved in its pathogenesis are still under investigation. This study was designed to screen and identify biomarkers of MB to provide markers for clinical diagnosis and prognosis assessment. METHODS The data sets of GSE109401 and GSE42656 were acquired from Gene expression omnibus (GEO). Limma package in R was adopted to identify the differentially expressed genes (DEGs), and the GSE30074 data set was adopted to analyse their prognostic role. Children with MB (n=55) diagnosed in Affiliated Ezhou Central Hospital were enrolled and assigned to the patient group, and healthy children (n=30) who received physical examination in our hospital during the same time period were assigned to the control group. The two groups were compared in serum NLGN2 and PTGDS levels, and all patients were followed up for three years to understand the associations of Neuroligin 2 (NLGN2) and Prostaglandin D2 synthase (PTGDS) with the survival of patients. RESULTS With Limma, 247 DEGs were screened out. The LASSO-Cox regression analysis revealed that 6 genes were associated with MB prognosis, and the established model revealed a lower survival rate in the high-risk group. According to Cox regression analysis, NLGN2 and PTGDS may be independent prognostic factors of MB. Similar to the data sets, the Real time-quantitative polymerase chain reaction (RT-qPCR) assay revealed lowly-expressed NLGN2 and PTGDS levels in MB patients, and patients with lower expression of them showed a lower 3-year survival rate. CONCLUSION With low expression in MB cases, NLGN2 and PTGDS have high prognostic value for MB.
Collapse
Affiliation(s)
- Zhangping Ren
- Department of Pediatrics, Affiliated Ezhou Central HospitalEzhou City 436000, Hubei, PR China
| | - Ming Gao
- Department of Pediatrics, Affiliated Ezhou Central HospitalEzhou City 436000, Hubei, PR China
| | - Wei Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology1095# Jiefang Avenue, Wuhan 430030, Hubei, PR China
| |
Collapse
|