1
|
Hassan A, Khalaily N, Kilav-Levin R, Del Castello B, Manley NR, Ben-Dov IZ, Naveh-Many T. Dicer-Mediated mTORC1 Signaling and Parathyroid Gland Integrity and Function. J Am Soc Nephrol 2024; 35:00001751-990000000-00339. [PMID: 38819931 PMCID: PMC11387037 DOI: 10.1681/asn.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Key Points
Maintaining parathyroid gland integrity is a dynamic process regulated by the parathyroid microRNA–mechanistic target of rapamycin complex 1 axis.This axis is essential for preserving intact parathyroid glands throughout life, with relevance to CKD-induced secondary hyperparathyroidism.
Background
Secondary hyperparathyroidism of CKD contributes significantly to patient morbidity and mortality. The underlining mechanisms of CKD-induced secondary hyperparathyroidism remain elusive. We previously demonstrated that PT-Dicer
−/−
mice, with parathyroid-specific deletion of the microRNA (miRNA)-processing enzyme Dicer and consequently miRNA, maintain normal basal serum parathyroid hormone (PTH) levels but do not develop secondary hyperparathyroidism induced by CKD. In addition, we showed that the parathyroid mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in CKD. We now explored the roles of Dicer/miRNA and mTORC1 in parathyroid development and function.
Methods
We generated mice with parathyroid-specific Dicer (PT-Dicer
−/−
), mechanistic target of rapamycin (PT-mTOR
−/−
), or tuberous sclerosis complex 1 (PT-Tsc1
−/−
) deficiency combined with yellow fluorescent protein (YFP) or tdTomato expression to identify the parathyroids by fluorescence microscopy. CKD was induced by an adenine-rich high-phosphate diet.
Results
Despite normal basal serum PTH levels, PT-Dicer
−/−
mice displayed apoptotic loss of intact parathyroid glands postnatally and reduced mechanistic target of rapamycin activity. PT-mTOR
−/−
mice lacked intact parathyroid glands yet maintained normal serum PTH levels, mirroring the phenotype of PT-Dicer
−/−
mice. Conversely, PT-Tsc1
−/−
mice with hyperactivated mTORC1 exhibited enlarged glands along with elevated basal serum PTH and calcium levels. Significantly, PT-Dicer
−/−
;Tsc1
−/−
double knockout mice preserved intact parathyroid glands and reinstated CKD-induced secondary hyperparathyroidism.
Conclusions
mTORC1 operates downstream of Dicer and miRNA in the parathyroid and is essential for maintaining postnatal parathyroid gland integrity throughout life and for the pathogenesis of CKD-induced secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Alia Hassan
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Nareman Khalaily
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Rachel Kilav-Levin
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
- School of Nursing, Jerusalem College of Technology, Faculty of Life and Health Sciences, Jerusalem, Israel
| | - Barbara Del Castello
- Department of Genetics, University of Georgia, Athens, Georgia
- CRDF Global, Arlington, Virginia
| | - Nancy Ruth Manley
- Department of Genetics, University of Georgia, Athens, Georgia
- Current address: School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Iddo Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology and Internal Medicine B, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Tally Naveh-Many
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
- Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
2
|
Margin Free Resection Achieves Excellent Long Term Outcomes in Parathyroid Cancer. Cancers (Basel) 2022; 15:cancers15010199. [PMID: 36612195 PMCID: PMC9818355 DOI: 10.3390/cancers15010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Long-term outcomes of parathyroid cancer remain poorly documented and unsatisfactory. This cohort includes 25 consecutive parathyroid cancer patients with median follow-up of 10.7 years (range 4.1−26.5 years). Pre-operative work-up in the center identified a suspicion of parathyroid cancer in 17 patients. En bloc resection, including the recurrent laryngeal nerve in 4/17 (23.5%), achieved cancer-free resection margins (R0) in 82.4% and lasting loco-regional disease control in 94.1%. Including patients referred after initial surgery elsewhere, R0 resection was achieved in merely 17/25 (68.0%) of patients. Cancer-positive margins (R1) in 8 patients led to local recurrence in 50%. On multivariate analysis, only margin status prevailed as independent predictor of recurrence free survival (χ2 19.5, p < 0.001). Local excision alone carried a 3.5-fold higher risk of positive margins than en bloc resection (CI95: 1.1−11.3; p = 0.03), and a 6.4-fold higher risk of locoregional recurrence (CI95: 0.8−52.1; p = 0.08). R1-status was associated with an 18.0-fold higher risk of recurrence and redo surgery (CI95: 1.1−299.0; p = 0.04), and a 22.0-fold higher probability of radiation (CI95: 1.4−355.5; p = 0.03). In patients at risk, adjuvant radiation reduced the actuarial risk of locoregional recurrence (p = 0.05). When pre-operative scrutiny resulted in upfront oncological surgery achieving cancer free margins, it afforded 100% recurrence free survival at 5- and 10-year follow-up, whilst failure to achieve clear margins caused significant burden by outpatient admissions (176 vs. 4 days; χ2 980, p < 0.001) and exposure to causes for concern (1369 vs. 0 days; χ2 11.3, p = 0.003). Although limited by cohort size, our study emphasizes the paradigm of getting it right the first time as key to improve survivorship in a cancer with excellent long-term prognosis.
Collapse
|
3
|
Podgórska B, Wielogórska-Partyka M, Godzień J, Siemińska J, Ciborowski M, Szelachowska M, Krętowski A, Siewko K. Applications of Metabolomics in Calcium Metabolism Disorders in Humans. Int J Mol Sci 2022; 23:ijms231810407. [PMID: 36142318 PMCID: PMC9499180 DOI: 10.3390/ijms231810407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of the disorders of calcium metabolism is not fully understood. This review discusses the studies in which metabolomics was applied in this area. Indeed, metabolomics could play an essential role in discovering biomarkers and elucidating pathological mechanisms. Despite the limited bibliography, the present review highlights the potential of metabolomics in identifying the biomarkers of some of the most common endocrine disorders, such as primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT), calcium deficiency, osteoporosis and vitamin D supplementation. Metabolites related to above-mentioned diseorders were grouped into specific classes and mapped into metabolic pathways. Furthermore, disturbed metabolic pathways can open up new directions for the in-depth exploration of the basic mechanisms of these diseases at the molecular level.
Collapse
Affiliation(s)
- Beata Podgórska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-831-83-12
| | - Marta Wielogórska-Partyka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Joanna Godzień
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Julia Siemińska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|