1
|
Faizo NL. The intestinal stem cell as a target: A review. Medicine (Baltimore) 2024; 103:e39456. [PMID: 39183418 PMCID: PMC11346866 DOI: 10.1097/md.0000000000039456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human intestinal epithelium handles several events that may affect health. It is composed of villi and crypts, which contain different types of cells. Each cell type plays an essential role in intestinal functions, including absorption, defense, self-renewal, and regeneration. Intestinal stem cells (ISCs), located at the base of intestinal crypts, play an important role in intestinal homeostasis and renewal. Any disruption in intestinal homeostasis, in which ISCs alter their function, may result in tumor growth. As Wnt and Notch signaling pathways are essential for ISCs homeostasis and for maintaining self-renewal, any defects in these pathways could increase the risk of developing colorectal cancer (CRC). Lgr5+ cells have been identified as intestinal stem cells expressing a leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), which is involved in the regulation of Wnt signaling. Several studies have reported upregulated expression of LGR5 in CRC. Hence, in this review, we discuss the relationship between LGR5, Wnt signaling, and Notch signaling and the development of CRC, as well as recent therapeutic strategies targeting LGR5, cancer stem cells (CSCs), and the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Shu L, Tang J, Liu S, Tao Y. Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:555-571. [PMID: 37814076 DOI: 10.1007/s13402-023-00883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy. METHODS Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines. RESULTS We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A. CONCLUSION We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jun Tang
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Smitha T, Thomas A. Is diabetes a real susceptibility for SARS-CoV-2 oral manifestation? J Oral Maxillofac Pathol 2023; 27:715-719. [PMID: 38304492 PMCID: PMC10829469 DOI: 10.4103/jomfp.jomfp_208_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 02/03/2024] Open
Abstract
Background Furin, a polybasic cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndromes like diabetes. Its cleavage action is an essential activation step for the SARS-CoV-2 attachment site at the junction of S1 and S2, the two subunits of the spike. This allows effective cleavage by furin and has a role in determining viral infectivity and host range. The increased expression of the furin enzyme in the saliva is remarkable enough to be noted as a susceptibility factor for diabetic patients. Aim of the Study The present study focuses on the qualitative assessment of the furin enzyme through an immunological ELISA test. Materials and Methods Used The study consisted of three groups, each of whom was a COVID-19 recovered patient (n = 20), a diabetic patient (n = 20), and a healthy patient (n = 20). Result The study assessed significantly increased levels of the furin enzyme generally in diabetic patients and COVID-19 recovered patients as compared to the healthy control group. Conclusion The estimation of furin in saliva still holds the possibility of being a prognostic marker in many COVID-19 infected patients. Further evidence-based studies are required to establish the same.
Collapse
Affiliation(s)
- T. Smitha
- Department of Oral and Maxillofacial Pathology, V.S Dental College and hospital, Bangalore
| | - Anela Thomas
- Department of Oral and Maxillofacial Pathology, V.S Dental College and hospital, Bangalore
| |
Collapse
|
4
|
Ottaiano A, Circelli L, Santorsola M, Caraglia M. Multifaceted Insights into Innovative Approaches to Treating Colorectal Cancer Metastasis: From Emerging Biological Factors to Radiomics. Cancers (Basel) 2023; 15:4644. [PMID: 37760613 PMCID: PMC10526760 DOI: 10.3390/cancers15184644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
We extend our appreciation to the authors who have made substantial contributions to the Special Issue focusing on "Colorectal Cancer Metastasis" [...].
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy;
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| |
Collapse
|
5
|
Liu S, Wu J, Lu X, Guo C, Zheng Q, Wang Y, Hu Q, Bian S, Luo L, Cheng Q, Liu Z, Dai W. Targeting CDK12 obviates the malignant phenotypes of colorectal cancer through the Wnt/β-catenin signaling pathway. Exp Cell Res 2023; 428:113613. [PMID: 37100369 DOI: 10.1016/j.yexcr.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and lies third in terms of morbidity due to the limited number of effective druggable targets. Since cancer stem cells (CSCs) are considered to be one of the roots of tumorigenesis, outgrowth and metastasis, targeting CSCs may be a promising strategy to reverse the malignant phenotypes of CRC. Cyclin-dependent kinase 12 (CDK12) has been reported to be involved in the self-renewal of CSCs in various cancers, rendering it an attractive potential target against CSCs to consequently limit the malignant phenotypes in CRC. In the present study, we aimed to investigate whether CDK12 can be a potential therapeutic target for patients with CRC and clarify its underlying mechanism. We found that CDK12, but not CDK13 is required for CRC survival. CDK12 was found to drive tumor initiation according to the colitis-associated colorectal cancer mouse model. In addition, CDK12 promoted CRC outgrowth and hepatic metastasis in the subcutaneous allograft and liver metastasis mouse models, respectively. In particular, CDK12 was able to induce the self-renewal of CRC CSCs. Mechanistically, the activation of Wnt/β-catenin signaling mediated by CDK12 was implicated in stemness regulation and malignant phenotype maintenance. These findings indicate that CDK12 is a candidate druggable target in CRC. Therefore, the CDK12 inhibitor SR-4835 warrants clinical trial testing in patients with CRC.
Collapse
Affiliation(s)
- Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaolu Lu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qisheng Zheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qiao Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Shuigen Bian
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Li Luo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qilai Cheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
François A, Descarpentrie J, Badiola I, Siegfried G, Evrard S, Pernot S, Khatib AM. Reprogramming immune cells activity by furin-like enzymes as emerging strategy for enhanced immunotherapy in cancer. Br J Cancer 2023; 128:1189-1195. [PMID: 36522477 PMCID: PMC10050397 DOI: 10.1038/s41416-022-02073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is becoming an advanced clinical management for various cancers. Rebuilding of aberrant immune surveillance on cancers has achieved notable progress in the past years by either in vivo or ex vivo engineering of efficient immune cells. Immune cells can be programmed with several strategies that improves their therapeutic influence and specificity. It has become noticeable that effective immunotherapy must consider the complete complexity of the immune cell function. However, today, almost all immune cells can be transiently or stably reprogrammed against various cancer cells. As a consequence, investigations have interrogated strategies to improve the efficacy of cancer immunotherapies by enhancing T-cell infiltration into tumour tissues. Here, we review the emerging role of furin-like enzymes work related to T-cell reprogramming, their tumour infiltration and cytotoxic function.
Collapse
Affiliation(s)
- Alexia François
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Jean Descarpentrie
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Géraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Serge Evrard
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Simon Pernot
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France.
- Institut Bergonié, 33000, Bordeaux, France.
| |
Collapse
|
7
|
Saito M. Novel Roles of Nanog in Cancer Cells and Their Extracellular Vesicles. Cells 2022; 11:cells11233881. [PMID: 36497144 PMCID: PMC9736053 DOI: 10.3390/cells11233881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The use of extracellular vesicle (EV)-based vaccines is a strategically promising way to prevent cancer metastasis. The effective roles of immune cell-derived EVs have been well understood in the literature. In the present paper, we focus on cancer cell-derived EVs to enforce, more thoroughly, the use of EV-based vaccines against unexpected malignant cells that might appear in poor prognostic patients. As a model of such a cancer cell with high malignancy, Nanog-overexpressing melanoma cell lines were developed. As expected, Nanog overexpression enhanced the metastatic potential of melanomas. Against our expectations, a fantastic finding was obtained that determined that EVs derived from Nanog-overexpressing melanomas exhibited a metastasis-suppressive effect. This is considered to be a novel role for Nanog in regulating the property of cancer cell-derived EVs. Stimulated by this result, the review of Nanog's roles in various cancer cells and their EVs has been updated once again. Although there was no other case presenting a similar contribution by Nanog, only one case suggested that NANOG and SOX might be better prognosis markers in head and neck squamous cell carcinomas. This review clarifies the varieties of Nanog-dependent phenomena and the relevant signaling factors. The information summarized in this study is, thus, suggestive enough to generate novel ideas for the construction of an EV-based versatile vaccine platform against cancer metastasis.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|