1
|
Singh A, Choudhury SD, Singh P, Singh VV, Singh SN, Sharma A. Ionic reverberation modulates the cellular fate of CD8 +tissue resident memory T cells (TRMs) in patients with renal cell carcinoma: A novel mechanism. Clin Immunol 2024; 264:110256. [PMID: 38762062 DOI: 10.1016/j.clim.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
In metastatic renal cell carcinoma (mRCC), existing treatments including checkpoint inhibitors are failed to cure and/or prevent recurrence of the disease. Therefore, in-depth understanding of tumor tissue resident memory T cells (TRMs) dysfunction are necessitated to enrich efficacy of immunotherapies and increasing disease free survival in treated patients. In patients, we observed dysregulation of K+, Ca2+, Na2+ and Zn2+ ion channels leads to excess infiltration of their respective ions in tumor TRMs, thus ionic gradients are disturbed and cells became hyperpolarized. Moreover, overloaded intramitochondrial calcium caused mitochondrial depolarization and trigger apoptosis of tumor TRMs. Decreased prevalence of activated tumor TRMs reflected our observations. Furthermore, disruptions in ionic concentrations impaired the functional activities and/or suppressed anti-tumor action of circulating and tumor TRMs in RCC. Collectively, these findings revealed novel mechanism behind dysfunctionality of tumor TRMs. Implicating enrichment of activated TRMs within tumor would be beneficial for better management of RCC patients.
Collapse
Affiliation(s)
- Ashu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Saumitra Dey Choudhury
- Central core Research facility, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Zhang W, Chen XS, Wei Y, Wang XM, Chen XJ, Chi BT, Huang LQ, He RQ, Huang ZG, Li Q, Chen G, He J, Wu M. Overexpressed KCNK1 regulates potassium channels affecting molecular mechanisms and biological pathways in bladder cancer. Eur J Med Res 2024; 29:257. [PMID: 38689322 PMCID: PMC11059691 DOI: 10.1186/s40001-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ying Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Min Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xian-Jin Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
4
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Reddiar SB, de Veer M, Paterson BM, Sepehrizadeh T, Wai DCC, Csoti A, Panyi G, Nicolazzo JA, Norton RS. A Biodistribution Study of the Radiolabeled Kv1.3-Blocking Peptide DOTA-HsTX1[R14A] Demonstrates Brain Uptake in a Mouse Model of Neuroinflammation. Mol Pharm 2023; 20:255-266. [PMID: 36331024 DOI: 10.1021/acs.molpharmaceut.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 μM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Brett M Paterson
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia.,School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Imaging Effector Memory T-Cells Predicts Response to PD1-Chemotherapy Combinations in Colon Cancer. Biomedicines 2022; 10:biomedicines10102343. [PMID: 36289605 PMCID: PMC9598730 DOI: 10.3390/biomedicines10102343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a lasting immune response. Given the potential toxicity of ICI–chemotherapy combinations, identification of biomarkers that accurately predict how individuals respond to specific treatment combinations and whether these responses will be long lasting is of paramount importance. In this study, we explored [18F]AlF-NOTA-KCNA3P, a peptide radiopharmaceutical that targets the Kv1.3 potassium channel overexpressed on T-effector memory (TEM) cells as a PET imaging biomarker for lasting immunological memory response. The first-line colon cancer chemotherapies oxaliplatin and 5-fluorouracil were assessed in a syngeneic colon cancer model, either as monotherapies or in combination with PD1, comparing radiopharmaceutical uptake to memory-associated immune cells in the tumour. [18F]AlF-NOTA-KCNA3P reliably separated tumours with immunological memory responses from non-responding tumours and could be used to measure Kv1.3-expressing TEM cells responsible for durable immunological memory response to combination therapy in vivo.
Collapse
|
8
|
Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 2022; 83:104216. [PMID: 35986950 PMCID: PMC9403334 DOI: 10.1016/j.ebiom.2022.104216] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) imposes a major obstacle to infiltrating T-lymphocytes and suppresses their function. Several immune checkpoint proteins that interfere with ligand/receptor interactions and impede T-cell anti-tumour responses have been identified. Immunotherapies that block immune checkpoints have revolutionized the treatment paradigm for many patients with advanced-stage tumours. However, metabolic constraints and soluble factors that exist within the TME exacerbate the functional exhaustion of tumour-infiltrating T-cells. Here we review these multifactorial constraints and mechanisms – elevated immunosuppressive metabolites and enzymes, nutrient insufficiency, hypoxia, increased acidity, immense amounts of extracellular ATP and adenosine, dysregulated bioenergetic and purinergic signalling, and ionic imbalance - that operate in the TME and collectively suppress T-cell function. We discuss how scientific advances could help overcome the complex TME obstacles for tumour-infiltrating T-lymphocytes, aiming to stimulate further research for developing new therapeutic strategies by harnessing the full potential of the immune system in combating cancer.
Collapse
|
9
|
How the Potassium Channel Response of T Lymphocytes to the Tumor Microenvironment Shapes Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14153564. [PMID: 35892822 PMCID: PMC9330401 DOI: 10.3390/cancers14153564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.
Collapse
|