1
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
2
|
Laurindo LF, Sosin AF, Lamas CB, de Alvares Goulart R, Dos Santos Haber JF, Detregiachi CRP, Barbalho SM. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2067-2082. [PMID: 37864589 DOI: 10.1007/s00210-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The potential benefits of adiponectin replacement therapy extend to numerous human diseases, with current research showing particular interest in its effectiveness against specific cancer forms, especially hormone-related. However, limitations in the pharmacological use of the intact protein have led to a focus on alternative options. AdipoRon is an extensively studied non-peptidic drug candidate for adiponectin replacement therapy. While researchers have explored the efficacy and therapeutic applications of AdipoRon in various disease conditions, their effects against cancer models advanced more, with no review regarding AdipoRon's efficacy against hormone-related cancers being published. The present systematic review aims to fill this gap. Preclinical evidence was compiled from PubMed, EMBASE, COCHRANE, and Google Scholar following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the manuscript's quality assessment was conducted using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews' Quality. The included nine studies incorporated various cell and animal models of the pancreas, gynaecological system, and osteosarcoma cancers. AdipoRon demonstrated effectiveness against pancreatic cancer by activating p44/42 MAPK, mitochondrial dysfunction, and AMPK-mediated inhibition of ACC1. In gynaecological cancers, it exhibited promising anticancer effects through the activation of AMPK, potential inhibition of mTOR, and modulation of the SET1B/BOD1/AdipoR1 signaling cascade. Against osteosarcoma, AdipoRon worked by perturbing ERK1/2 signaling and reducing p70S6K phosphorylation. AdipoRon shows promise in preclinical studies, but human trials are crucial for clinical safety and effectiveness. Caution is needed due to potential off-target effects, especially in cancer therapy with multi-target approaches. Structural biology and computational methods can help predict these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Andreline Franchi Sosin
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | | | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| |
Collapse
|
3
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Shao Z, Wang H, Ren H, Sun Y, Chen X. The Anticancer Effect of Napabucasin (BBI608), a Natural Naphthoquinone. Molecules 2023; 28:5678. [PMID: 37570646 PMCID: PMC10420168 DOI: 10.3390/molecules28155678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Napabucasin (also known as BBI608) is a natural naphthoquinone originally identified as a cancer cell stemness inhibitor. Accumulated in vitro and in vivo evidence demonstrated that napabucasin showed significant anticancer effects in various types of cancers. Napabucasin inhibits cancer cell proliferation, induces apoptosis and cell cycle arrest, and suppresses metastasis and relapse. Such anticancer activities of napabucasin mainly rely on the inhibition of cancer stemness by targeting signal transducer and activator of transcription 3 (STAT3) and its related gene inhibition. However, several novel molecular targets for napabucasin, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and thioredoxin reductase 1 (TrxR1), have been reported. Napabucasin represents a promising anticancer lead for multiple cancers. In this mini review, the anticancer potential and the molecular mechanism of napabucasin will be briefly highlighted.
Collapse
Affiliation(s)
- Zeyang Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Haiyan Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Yinxiang Sun
- Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Disease, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
5
|
Ghosh H, Bhattacharyya S, Schobert R, Dandawate P, Biersack B. Fluorinated and N-Acryloyl-Modified 3,5-Di[( E)-benzylidene]piperidin-4-one Curcuminoids for the Treatment of Pancreatic Carcinoma. Pharmaceutics 2023; 15:1921. [PMID: 37514107 PMCID: PMC10385166 DOI: 10.3390/pharmaceutics15071921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic carcinoma is a cancer disease with high mortality. Thus, new and efficient treatments for this disease are badly needed. Curcumin has previously shown promising effects in pancreatic cancer patients; however, this natural compound suffers from inadequate efficacy and bioavailability, preventing its clinical approval. The synthetic curcuminoid EF24 was developed with activities superior to curcumin against various cancer types. In this study, a series of analogs of EF24 were investigated for anticancer effects on pancreatic carcinoma models. A distinct activity boost was achieved by straightforward N-acrylation of EF24 analogs, in particular, of compounds bearing 3-fluoro-4-methoxybenzylidene, 3,4-difluorobenzylidene, and 4-trifluoromethylbenzylidene moieties, while no improvement was seen for N-acryloyl-modified EF24. Apoptosis induction and suppression of phospho-STAT3 levels were determined, the latter corroborated by docking of active curcuminoids into STAT3. Hence, promising new clues for the development of efficient and superior curcuminoids as valuable treatment options for one of the most lethal cancer diseases were discovered in this study.
Collapse
Affiliation(s)
- Hindole Ghosh
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Sangita Bhattacharyya
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Rainer Schobert
- Organic Chemistry 1, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Prasad Dandawate
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
6
|
Biomarkers in Liquid Biopsies for Prediction of Early Liver Metastases in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14194605. [PMID: 36230528 PMCID: PMC9562670 DOI: 10.3390/cancers14194605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies with poor survival rates. Only 20% of the patients are eligible for R0-surgical resection, presenting with early relapses, mainly in the liver. PDAC patients with hepatic metastases have a worse outcome compared to patients with metastases at other sites. Early detection of hepatic spread bears the potential to improve patient outcomes. Thus, this study sought for serum-based perioperative biomarkers allowing discrimination of early (EHMS ≤ 12 months) and late hepatic metastatic spread (LHMS > 12 months). Serum samples from 83 resectable PDAC patients were divided into EHMS and LHMS and analyzed for levels of inflammatory mediators by LEGENDplexTM, which was validated and extended by Olink® analysis. CA19-9 serum levels served as control. Results were correlated with clinicopathological data. While serum CA19-9 levels were comparable, Olink® analysis confirmed distinct differences between both groups. It revealed significantly elevated levels of factors involved in chemotaxis and migration of immune cells, immune activity, and cell growth in serum of LHMS-patients. Overall, Olink® analysis identified a comprehensive biomarker panel in serum of PDAC patients that could provide the basis for predicting LHMS. However, further studies with larger cohorts are required for its clinical translation.
Collapse
|