1
|
Ödén J, Eriksson K, Pavoni B, Crezee H, Kok HP. A Novel Framework for Thermoradiotherapy Treatment Planning. Int J Radiat Oncol Biol Phys 2024; 119:1530-1544. [PMID: 38387812 DOI: 10.1016/j.ijrobp.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Thermoradiotherapy combines radiation therapy with hyperthermia to increase therapeutic effectiveness. Currently, both modalities are optimized separately and in state-of-the-art research the enhanced therapeutic effect is evaluated using equivalent radiation dose in 2-Gy fractions (EQD2). This study proposes a novel thermoradiotherapy treatment planning framework with voxelwise EQD2 radiation therapy optimizing including thermal radiosensitization and direct thermal cytotoxicity. METHODS AND MATERIALS To demonstrate proof-of-concept of the planning framework, 3 strategies consisting of 20 radiation therapy fractions were planned for 4 prostate cancer cases with substantially different temperature distributions: (1) Conventional radiation therapy plan of 60 Gy combined with 4 hyperthermia sessions (RT60 + HT), (2) standalone uniform dose escalation to 68 Gy without hyperthermia (RT68), and (3) uniform target EQD2 that maximizes the tumor control probability (TCP) accounting for voxelwise thermal effects of 4 hyperthermia sessions without increasing normal tissue doses (RTHT + HT). Assessment included dose, EQD2, TCP, and rectal normal tissue complication probability (NTCP), alongside robustness analyses for TCP and NTCP against parameter uncertainties. RESULTS The estimated TCP of around 76% for RT60 without hyperthermia was increased to an average of 85.9% (range, 81.3%-90.5%) for RT60 + HT, 92.5% (92.4%-92.5%) for RT68, and 94.4% (91.7%-96.6%) for RTHT + HT. The corresponding averaged rectal NTCPs were 8.7% (7.9%-10.0%), 14.9% (13.8%-17.1%), and 8.4% (7.5%-9.7%), respectively. RT68 and RTHT + HT exhibited slightly enhanced TCP robustness against parameter uncertainties compared with RT60 + HT, and RT68 presented higher and less robust rectal NTCP values compared with the other planning strategies. CONCLUSIONS This study introduces an innovative thermoradiotherapy planning approach, integrating thermal effects into EQD2-based radiation therapy optimization. Results demonstrate an ability to achieve enhanced and uniform target EQD2 and TCP across various temperature distributions without elevating normal tissue EQD2 or NTCP compared with conventional methods. Although promising for improving clinical outcomes, realizable enhancements depend on accurate tumor- and tissue-specific data and precise quantification of hyperthermic effects, which are seamlessly integrable in the planning framework as they emerge.
Collapse
Affiliation(s)
- Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden.
| | | | | | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Androulakis I, Mestrom RM, Curto S, Kolkman-Deurloo IKK, van Rhoon GC. Preclinical prototype validation and characterization of a thermobrachytherapy system for interstitial hyperthermia and high-dose-rate brachytherapy. Phys Imaging Radiat Oncol 2024; 31:100606. [PMID: 39100864 PMCID: PMC11294723 DOI: 10.1016/j.phro.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background and purpose Integrating simultaneous interstitial hyperthermia in high-dose-rate brachytherapy treatments (HDR-BT) is expected to lead to enhanced therapeutic effect. However, there is currently no device available for such an integration. In this study, we presented and validated the thermobrachytherapy (TBT) preclinical prototype system that is able to seamlessly integrate into the HDR-BT workflow. Materials and methods The TBT system consisted of an advanced radiofrequency power delivery and control system, dual-function interstitial applicators, and integrated connection and impedance matching system. The efficiency and minimum heating ability of the system was calculated performing calorimetric experiments. The effective-heating-length and heating pattern was evaluated using single-applicator split phantom experiments. The heating independence between applicators, the ability of the system to adaptable and predictable temperature steering was evaluated using multi-applicator split phantom experiments. Results The system satisfied interstitial hyperthermia requirements. It demonstrated 50 % efficiency and ability to reach 6 °C temperature increase in 6 min. Effective-heating-length of the applicator was 43.7 mm, following the initial design. Heating pattern interference between applicators was lower than recommended. The system showed its ability to generate diverse heating patterns by adjusting the phase and amplitude settings of each electrode, aligning well with simulations (minimum agreement of 88 %). Conclusions The TBT preclinical prototype system complied with IHT requirements, and agreed well with design criteria and simulations, hence performing as expected. The preclinical prototype TBT system can now be scaled to an in-vivo validation prototype, including an adaptable impedance matching solution, appropriate number of channels, and ensuring biocompatibility and regulatory compliance.
Collapse
Affiliation(s)
- Ioannis Androulakis
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Rob M.C. Mestrom
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | | | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Kok HP, Herrera TD, Crezee J. Biological treatment evaluation in thermoradiotherapy: application in cervical cancer patients. Strahlenther Onkol 2024; 200:512-522. [PMID: 38177701 PMCID: PMC11111588 DOI: 10.1007/s00066-023-02185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Hyperthermia treatment quality is usually evaluated by thermal (dose) parameters, though hyperthermic radiosensitization effects are also influenced by the time interval between the two modalities. This work applies biological modelling for clinical treatment evaluation of cervical cancer patients treated with radiotherapy plus hyperthermia by calculating the equivalent radiation dose (EQDRT, i.e., the dose needed for the same effect with radiation alone). Subsequent analyses evaluate the impact of logistics. METHODS Biological treatment evaluation was performed for 58 patients treated with 23-28 fractions of 1.8-2 Gy plus 4-5 weekly hyperthermia sessions. Measured temperatures (T50) and recorded time intervals between the radiotherapy and hyperthermia sessions were used to calculate the EQDRT using an extended linear quadratic (LQ) model with hyperthermic LQ parameters based on extensive experimental data. Next, the impact of a 30-min time interval (optimized logistics) as well as a 4‑h time interval (suboptimal logistics) was evaluated. RESULTS Median average measured T50 and recorded time intervals were 41.2 °C (range 39.7-42.5 °C) and 79 min (range 34-125 min), respectively, resulting in a median total dose enhancement (D50) of 5.5 Gy (interquartile range [IQR] 4.0-6.6 Gy). For 30-min time intervals, the enhancement would increase by ~30% to 7.1 Gy (IQR 5.5-8.1 Gy; p < 0.001). In case of 4‑h time intervals, an ~ 40% decrease in dose enhancement could be expected: 3.2 Gy (IQR 2.3-3.8 Gy; p < 0.001). Normal tissue enhancement was negligible (< 0.3 Gy), even for short time intervals. CONCLUSION Biological treatment evaluation is a useful addition to standard thermal (dose) evaluation of hyperthermia treatments. Optimizing logistics to shorten time intervals seems worthwhile to improve treatment efficacy.
Collapse
Affiliation(s)
- H P Kok
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - T D Herrera
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Groen JA, Crezee J, van Laarhoven HWM, Coolen BF, Strijkers GJ, Bijlsma MF, Kok HP. Robust, planning-based targeted locoregional tumour heating in small animals. Phys Med Biol 2024; 69:085017. [PMID: 38471172 DOI: 10.1088/1361-6560/ad3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Bram F Coolen
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Groen JA, Crezee J, van Laarhoven HWM, Bijlsma MF, Kok HP. Quantification of tissue property and perfusion uncertainties in hyperthermia treatment planning: Multianalysis using polynomial chaos expansion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107675. [PMID: 37339535 DOI: 10.1016/j.cmpb.2023.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Hyperthermia treatment planning (HTP) tools can guide treatment delivery, particularly with locoregional radiative phased array systems. Uncertainties in tissue and perfusion property values presently lead to quantitative inaccuracy of HTP, leading to sub-optimal treatment. Assessment of these uncertainties would allow for better judgement of the reliability of treatment plans and improve their value for treatment guidance. However, systematically investigating the impact of all uncertainties on treatment plans is a complex, high-dimensional problem and too computationally expensive for traditional Monte Carlo approaches. This study aims to systematically quantify the treatment-plan impact of tissue property uncertainties by investigating their individual contribution to, and combined impact on predicted temperature distributions. METHODS A novel Polynomial Chaos Expansion (PCE)-based HTP uncertainty quantification was developed and applied for locoregional hyperthermia of modelled tumours in the pancreatic head, prostate, rectum, and cervix. Patient models were based on the Duke and Ella digital human models. Using Plan2Heat, treatment plans were created to optimise tumour temperature (represented by T90) for treatment using the Alba4D system. For all 25-34 modelled tissues, the impact of tissue property uncertainties was analysed individually i.e., electrical and thermal conductivity, permittivity, density, specific heat capacity and perfusion. Next, combined analyses were performed on the top 30 uncertainties with the largest impact. RESULTS Uncertainties in thermal conductivity and heat capacity were found to have negligible impact on the predicted temperature ( < 1 × 10-10 °C), density and permittivity uncertainties had a small impact (< 0.3 °C). Uncertainties in electrical conductivity and perfusion can lead to large variations in predicted temperature. However, variations in muscle properties result in the largest impact at locations that could limit treatment quality, with a standard deviation up to almost 6 °C (pancreas) and 3.5 °C (prostate) for perfusion and electrical conductivity, respectively. The combined influence of all significant uncertainties leads to large variations with a standard deviation up to 9.0, 3.6, 3.7 and 4.1 °C for the pancreatic, prostate, rectal and cervical cases, respectively. CONCLUSION Uncertainties in tissue and perfusion property values can have a large impact on predicted temperatures from hyperthermia treatment planning. PCE-based analysis helps to identify all major uncertainties, their impact and judge the reliability of treatment plans.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands.
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Bodis S, Ghadjar P, van Rhoon G. Oncologic Thermoradiotherapy: Need for Evidence, Harmonisation, and Innovation. Cancers (Basel) 2022; 14:cancers14102418. [PMID: 35626026 PMCID: PMC9139232 DOI: 10.3390/cancers14102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The road of acceptance of oncologic thermotherapy/hyperthermia as a synergistic modality in combination with standard oncologic therapies is still bumpy [...]
Collapse
Affiliation(s)
- Stephan Bodis
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zürich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, 8032 Zürich, Switzerland
- Correspondence:
| | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Gerard van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|