1
|
Huang DZ, Zhang X, Rao J. [Progression and application of circulating tumor DNA in lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:878-882. [PMID: 39414617 PMCID: PMC11518914 DOI: 10.3760/cma.j.cn121090-20240528-00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 10/18/2024]
Abstract
Lymphomas are a highly heterogeneous group of tumors that are classified into several subtypes. The gold standard method for the molecular profiling of lymphoma is based on invasive lymph node or tissue biopsy. However, this method cannot accurately capture spatial tumor heterogeneity in each patient as well as systemic tumor invasion and tumor burden. Circulating tumor DNA (ctDNA) is an emerging and highly versatile biomarker that overcomes the basic limitations of imaging scanning and tissue biopsy; has the characteristics of being simple, rapid, and non-invasive; and has good specificity and high sensitivity. ctDNA testing has been applied to a variety of subtypes of lymphoma and has been used for somatic mutation genotyping, efficacy monitoring during treatment, detection of minimal residual disease, and the prediction of survival, which may help clinicians make better clinical decisions in the diagnosis and treatment of lymphoma patients. Furthermore, this study also aims to review the different methods of ctDNA analysis and describe the specific applications of ctDNA in different lymphoma subtypes.
Collapse
Affiliation(s)
- D Z Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - X Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China Jinfeng Laboratory, Chongqing 401329, China
| | - J Rao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China
| |
Collapse
|
2
|
Britto LS, Balasubramani D, Desai S, Phillips P, Trehan N, Cesarman E, Koff J, Singh A. T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas through H3K9me3 Modifications. Adv Healthc Mater 2024:e2401192. [PMID: 38837879 PMCID: PMC11617604 DOI: 10.1002/adhm.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.
Collapse
Affiliation(s)
- Lucy S. Britto
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Deepali Balasubramani
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sona Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Phunterion Phillips
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Neev Trehan
- St Richards Hospital, University Hospitals Sussex NHS Foundation Trust, Chichester, West Sussex, UK
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Jean Koff
- Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332 USA
| |
Collapse
|
3
|
Liu Q, Zhou X, Liu K, Wang Y, Liu C, Gao C, Cai Q, Sun C. Exploring risk factors for autoimmune diseases complicated by non-hodgkin lymphoma through regulatory T cell immune-related traits: a Mendelian randomization study. Front Immunol 2024; 15:1374938. [PMID: 38863695 PMCID: PMC11165099 DOI: 10.3389/fimmu.2024.1374938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Background The effect of immune cells on autoimmune diseases (ADs) complicated by non-Hodgkin lymphoma (NHL) has been widely recognized, but a causal relationship between regulatory T cell (Treg) immune traits and ADs complicated by NHL remains debated. Methods Aggregate data for 84 Treg-related immune traits were downloaded from the Genome-Wide Association Study (GWAS) catalog, and GWAS data for diffuse large B-cell lymphoma (DLBCL; n=315243), follicular lymphoma (FL; n=325831), sjögren's syndrome (SS; n=402090), rheumatoid arthritis (RA; n=276465), dermatopolymyositis (DM; n=311640), psoriasis (n=407876), atopic dermatitis (AD; n=382254), ulcerative colitis (UC; n=411317), crohn's disease(CD; n=411973) and systemic lupus erythematosus (SLE; n=307587) were downloaded from the FinnGen database. The inverse variance weighting (IVW) method was mainly used to infer any causal association between Treg-related immune traits and DLBCL, FL, SS, DM, RA, Psoriasis, AD, UC, CD and SLE, supplemented by MR-Egger, weighted median, simple mode, and weighted mode. Moreover, we performed sensitivity analyses to assess the validity of the causal relationships. Results There was a potential genetic predisposition association identified between CD39+ CD8br AC, CD39+ CD8br % T cell, and the risk of DLBCL (OR=1.51, p<0.001; OR=1.25, p=0.001) (adjusted FDR<0.1). Genetic prediction revealed potential associations between CD25++ CD8br AC, CD28- CD25++ CD8br % T cell, CD39+ CD8br % CD8br, and the risk of FL (OR=1.13, p=0.022; OR=1.28, p=0.042; OR=0.90, p=0.016) (adjusted FDR>0.1). Furthermore, SLE and CD exhibited a genetically predicted potential association with the CD39+ CD8+ Tregs subset. SS and DM were possibly associated with an increase in the quantity of the CD4+ Tregs subset; RA may have reduced the quantity of the CD39+ CD8+ Tregs subset, although no causal relationship was identified. Sensitivity analyses supported the robustness of our findings. Conclusions There existed a genetically predicted potential association between the CD39+ CD8+ Tregs subset and the risk of DLBCL, while SLE and CD were genetically predicted to be potentially associated with the CD39+ CD8+ Tregs subset. The CD39+ CD8+ Tregs subset potentially aided in the clinical diagnosis and treatment of SLE or CD complicated by DLBCL.
Collapse
Affiliation(s)
- Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine Department, Beijing University of Chinese Medicine, Beijing, China
| | - Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
4
|
Hontecillas-Prieto L, García-Domínguez DJ, Palazón-Carrión N, Martín García-Sancho A, Nogales-Fernández E, Jiménez-Cortegana C, Sánchez-León ML, Silva-Romeiro S, Flores-Campos R, Carnicero-González F, Ríos-Herranz E, de la Cruz-Vicente F, Rodríguez-García G, Fernández-Álvarez R, Martínez-Banaclocha N, Gumà-Padrò J, Gómez-Codina J, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Labrador J, Guirado-Risueño M, Provencio-Pulla M, Sánchez-Beato M, Marylene L, Álvaro-Naranjo T, Casanova-Espinosa M, Rueda-Domínguez A, Sánchez-Margalet V, de la Cruz-Merino L. CD8+ NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma. Front Immunol 2024; 15:1293931. [PMID: 38469299 PMCID: PMC10926187 DOI: 10.3389/fimmu.2024.1293931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma worldwide. DLBCL is an aggressive disease that can be cured with upfront standard chemoimmunotherapy schedules. However, in approximately 35-40% of the patients DLBCL relapses, and therefore, especially in this setting, the search for new prognostic and predictive biomarkers is an urgent need. Natural killer (NK) are effector cells characterized by playing an important role in antitumor immunity due to their cytotoxic capacity and a subset of circulating NK that express CD8 have a higher cytotoxic function. In this substudy of the R2-GDP-GOTEL trial, we have evaluated blood CD8+ NK cells as a predictor of treatment response and survival in relapsed/refractory (R/R) DLBCL patients. Methods 78 patients received the R2-GDP schedule in the phase II trial. Blood samples were analyzed by flow cytometry. Statistical analyses were carried out in order to identify the prognostic potential of CD8+ NKs at baseline in R/R DLBCL patients. Results Our results showed that the number of circulating CD8+ NKs in R/R DLBCL patients were lower than in healthy donors, and it did not change during and after treatment. Nevertheless, the level of blood CD8+ NKs at baseline was associated with complete responses in patients with R/R DLBCL. In addition, we also demonstrated that CD8+ NKs levels have potential prognostic value in terms of overall survival in R/R DLBCL patients. Conclusion CD8+ NKs represent a new biomarker with prediction and prognosis potential to be considered in the clinical management of patients with R/R DLBCL. Clinical trial registration https://www.clinicaltrialsregister.eu/ctr-search/search?query=2014-001620-29 EudraCT, ID:2014-001620-29.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Alejandro Martín García-Sancho
- Department of Hematology, Hospital Universitario de Salamanca, IBSAL, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Esteban Nogales-Fernández
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - María L. Sánchez-León
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Silvia Silva-Romeiro
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Rocío Flores-Campos
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | | | | | | | | | | | - Natividad Martínez-Banaclocha
- Oncology Dept., Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Josep Gumà-Padrò
- Department of Clinical Oncology, Hospital Universitari Sant Joan de Reus URV, IISPV, Reus, Spain
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario La Fé, Valencia, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular, Las Palmas de Gran Canaria, Spain
| | - Laura Gálvez-Carvajal
- Department of Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Jorge Labrador
- Department of Hematology, Research Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - María Guirado-Risueño
- Department of Clinical Oncology, Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Provencio-Pulla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| | - Margarita Sánchez-Beato
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, CIBERONC, Madrid, Spain
| | - Lejeune Marylene
- Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, IISPV, URV, Tortosa, Tarragona, Spain
| | - Tomás Álvaro-Naranjo
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Tarragona, Spain
| | | | | | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
5
|
García-Domínguez DJ, López-Enríquez S, Alba G, Garnacho C, Jiménez-Cortegana C, Flores-Campos R, de la Cruz-Merino L, Hajji N, Sánchez-Margalet V, Hontecillas-Prieto L. Cancer Nano-Immunotherapy: The Novel and Promising Weapon to Fight Cancer. Int J Mol Sci 2024; 25:1195. [PMID: 38256268 PMCID: PMC10816838 DOI: 10.3390/ijms25021195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is a complex disease that, despite advances in treatment and the greater understanding of the tumor biology until today, continues to be a prevalent and lethal disease. Chemotherapy, radiotherapy, and surgery are the conventional treatments, which have increased the survival for cancer patients. However, the complexity of this disease together with the persistent problems due to tumor progression and recurrence, drug resistance, or side effects of therapy make it necessary to explore new strategies that address the challenges to obtain a positive response. One important point is that tumor cells can interact with the microenvironment, promoting proliferation, dissemination, and immune evasion. Therefore, immunotherapy has emerged as a novel therapy based on the modulation of the immune system for combating cancer, as reflected in the promising results both in preclinical studies and clinical trials obtained. In order to enhance the immune response, the combination of immunotherapy with nanoparticles has been conducted, improving the access of immune cells to the tumor, antigen presentation, as well as the induction of persistent immune responses. Therefore, nanomedicine holds an enormous potential to enhance the efficacy of cancer immunotherapy. Here, we review the most recent advances in specific molecular and cellular immunotherapy and in nano-immunotherapy against cancer in the light of the latest published preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain;
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Rocío Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Medicine, University of Seville, 41009 Seville, Spain
| | - Nabil Hajji
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Cancer Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| |
Collapse
|
6
|
Pickard K, Stephenson E, Mitchell A, Jardine L, Bacon CM. Location, location, location: mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front Oncol 2023; 13:1258245. [PMID: 37869076 PMCID: PMC10586500 DOI: 10.3389/fonc.2023.1258245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.
Collapse
Affiliation(s)
- Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Mitchell
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Hollar D. Survey of genomic and physiological characteristics for survival in lymphoma: The NCI genomic data portal. Curr Probl Cancer 2023; 47:100955. [PMID: 36913744 DOI: 10.1016/j.currproblcancer.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
Lymphoma represents a myriad collection of neoplasms that impact lymphocytes. This cancer often involves disrupted cytokine, immune surveillance, and gene regulatory signaling, sometimes with expression of Epstein Barr Virus (EBV). We explored mutation patterns for People experiencing Lymphoma (PeL) in the National Cancer Institute (NCI) Genomic Data Commons (GDC), which contains detailed, deidentified genomic data on 86,046 people who have/had cancer with 2,730,388 distinctive mutations in 21,773 genes. The database included information on 536 (PeL), with the primary focal sample being the n = 30 who had complete mutational genomic data. We used correlations, independent samples t-tests, and linear regression to compare PeL demographics and vital status on mutation numbers, BMI, and mutation deleterious score across functional categories of 23 genes. PeL demonstrated varied patterns of mutated genes, consistent with most other cancer types. The primary PeL gene mutations clustered around five functional protein groups: transcriptional regulatory proteins, TNF/NFKB and cell signaling regulators, cytokine signaling proteins, cell cycle regulators, and immunoglobulins. Diagnosis Age, Birth Year, and BMI negatively (P < 0.05) correlated with Days to Death, and cell cycle mutations negatively correlated (P = 0.004) with survival days (R2 = 0.389). There were commonalities in some PeL for mutations across other cancer types based upon large sequence length, but also for 6 small cell lung cancer genes. Immunoglobulin mutations were prevalent but not for all cases. Research indicates a need for greater personalized genomics and multi-level systems analysis to evaluate facilitators and barriers for lymphoma survival.
Collapse
Affiliation(s)
- David Hollar
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA.
| |
Collapse
|
8
|
Lin M, Ma S, Sun L, Qin Z. The prognostic value of tumor-associated macrophages detected by immunostaining in diffuse large B cell lymphoma: A meta-analysis. Front Oncol 2023; 12:1094400. [PMID: 36741724 PMCID: PMC9895774 DOI: 10.3389/fonc.2022.1094400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Background The prognostic implication of tumor-associated macrophages (TAMs) in the microenvironment of diffuse large B cell lymphoma (DLBCL) remains controversial. Methods A systematic and comprehensive search of relevant studies was performed in PubMed, Embase and Web of Science databases. The quality of the included studies was estimated using Newcastle-Ottawa Scale (NOS). Results Twenty-three studies containing a total of 2992 DLBCL patients were involved in this study. They were all high-quality studies scoring ≥ 6 points. High density of M2 TAMs in tumor microenvironment significantly associated with both advanced disease stage (OR= 1.937, 95% CI: 1.256-2.988, P = 0.003) and unfavorable overall survival (OS) (HR = 1.750, 95% CI: 1.188-2.579, P = 0.005) but not associated with poor progression free survival (PFS) (HR = 1.672, 95% CI: 0.864-3.237, P = 0.127) and international prognostic index (IPI) (OR= 1.705, 95% CI: 0.843-3.449, P = 0.138) in DLBCL patients. No significant correlation was observed between the density of CD68+ TAMs and disease stage (OR= 1.433, 95% CI: 0.656-3.130, P = 0.366), IPI (OR= 1.391, 95% CI: 0.573-3.379, P = 0.466), OS (HR=0.929, 95% CI: 0.607-1.422, P = 0.734) or PFS (HR= 0.756, 95% CI: 0.415-1.379, P = 0.362) in DLBCL patients. Conclusion This meta-analysis demonstrated that high density of M2 TAMs in the tumor microenvironment was a robust predictor of adverse outcome for DLBCL patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022343045.
Collapse
Affiliation(s)
- Mei Lin
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shupei Ma
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Lingling Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhiqiang Qin
- Department of Pathology, People Hospital of Changzhi, Changzhi, Shanxi, China
| |
Collapse
|
9
|
Arandi N, Dehghani M. Immune Microenvironment in Hematologic Malignancies. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:1-3. [PMID: 36688190 PMCID: PMC9843458 DOI: 10.30476/ijms.2023.48937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nargess Arandi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,
Department of Hematology and Medical Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Sheikh IN, Elgehiny A, Ragoonanan D, Mahadeo KM, Nieto Y, Khazal S. Management of Aggressive Non-Hodgkin Lymphomas in the Pediatric, Adolescent, and Young Adult Population: An Adult vs. Pediatric Perspective. Cancers (Basel) 2022; 14:2912. [PMID: 35740580 PMCID: PMC9221186 DOI: 10.3390/cancers14122912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a broad entity which comprises a number of different types of lymphomatous malignancies. In the pediatric and adolescent population, the type and prognosis of NHL varies by age and gender. In comparison to adults, pediatric and adolescent patients generally have better outcomes following treatment for primary NHL. However, relapsed/refractory (R/R) disease is associated with poorer outcomes in many types of NHL such as diffuse large B cell lymphoma and Burkitt lymphoma. Newer therapies have been approved in the use of primary NHL in the pediatric and adolescent population such as Rituximab and other therapies such as chimeric antigen receptor T-cell (CAR T-cell) therapy are under investigation for the treatment of R/R NHL. In this review, we feature the characteristics, diagnosis, and treatments of the most common NHLs in the pediatric and adolescent population and also highlight the differences that exist between pediatric and adult disease. We then detail the areas of treatment advances such as immunotherapy with CAR T-cells, brentuximab vedotin, and blinatumomab as well as cell cycle inhibitors and describe areas where further research is needed. The aim of this review is to juxtapose established research regarding pediatric and adolescent NHL with recent advancements as well as highlight treatment gaps where more investigation is needed.
Collapse
Affiliation(s)
- Irtiza N. Sheikh
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amr Elgehiny
- Department of Pediatrics, McGovern Medical School, The University of Texas at Houston Health Science Center, Houston, TX 77030, USA;
| | - Dristhi Ragoonanan
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Kris M. Mahadeo
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Yago Nieto
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sajad Khazal
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| |
Collapse
|