1
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2024:S1934-5909(24)00412-0. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
2
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch C, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024; 56:2763-2775. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Huang Y, Wen Z, Tao S, Yu Z, Wang X, Li X, Gao L. CLIP170 enhancing FOSL1 expression via attenuating ubiquitin-mediated degradation of β-catenin drives renal cell carcinoma progression. Cell Mol Life Sci 2024; 81:467. [PMID: 39607512 PMCID: PMC11604886 DOI: 10.1007/s00018-024-05504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Protein interactions are fundamental for all cellular metabolic activities. Cytoplasmic linker protein 170 (CLIP170) plays diverse roles in cellular processes and the development of malignant tumors. Renal cell carcinoma (RCC) poses a significant challenge in oncology owing to its invasive nature, metastatic potential, high recurrence rates, and poor prognosis. However, the specific mechanisms and roles of CLIP170 underlying its involvement in RCC progression remain unclear. The findings of this study revealed a significant upregulation of CLIP170 in RCC tumor tissues. Elevated CLIP170 expression correlated positively with advanced clinical and pathological stages and was associated with poor overall survival in RCC patients. Functional assays in vitro demonstrated that elevated CLIP170 levels enhanced RCC cell proliferation, migration and invasion. Mechanistically, 4D-label free proteomics library identified that CLIP170 increased the level of FOSL1 in the Wnt signaling pathway. Immunoprecipitation and molecular docking were performed to unveil that CLIP170 formed a complex with β-catenin, inhibiting β-catenin degradation via the ubiquitin-proteasome pathway. Elevated β-catenin levels within RCC cells played a central role in promoting the transcriptional expression of FOSL1, thereby facilitating RCC cell proliferation and epithelial-mesenchymal transition (EMT) progression. In vivo investigations corroborated these findings, illustrating that CLIP170 regulated β-catenin and FOSL1 expression, driving tumor growth in RCC. This study highlights the crucial role of CLIP170 in promoting FOSL1 expression by preventing β-catenin ubiquitination and degradation, thus promoting RCC tumor progression. It suggests the CLIP170/β-catenin/FOSL1 axis as a potential therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Yuanbin Huang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Dalian, 116000, China
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuyao Tao
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Dalian, 116000, China
| | - Zhenlong Yu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Xiaogang Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Dalian, 116000, China
| | - Xiancheng Li
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Dalian, 116000, China.
| | - Lu Gao
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Technology Innovation Center of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Saini P, Holmes AG, Wei JJ, Parker JB, Chakravarti D. Engineered uterine primary myometrial cells with high-mobility group AT-hook 2 overexpression display a leiomyoma-like transcriptional and epigenomic phenotype. F&S SCIENCE 2024; 5:352-368. [PMID: 39074663 PMCID: PMC11588529 DOI: 10.1016/j.xfss.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE To determine if engineered high-mobility group AT-hook 2 (HMGA2) overexpressing uterine primary myometrial cells recapitulate the transcriptional and epigenomic features of HMGA2-subtype leiomyomas. DESIGN Isolated primary, "normal" myometrial cells from three patients were engineered to overexpress HMGA2 to determine how HMGA2 establishes transcriptomic and epigenomic features of HMGA2-overexpressing leiomyoma. SETTING Academic research laboratory. PATIENT(S) Primary myometrial cells were isolated from normal myometrium obtained from three patients undergoing hysterectomy. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Determined genome-wide transcriptomic and epigenomic features of engineered HMGA2-overexpressing uterine primary myometrial cells. RESULT(S) Engineered HMGA2-V5-overexpressing primary myometrial cells approximated the HMGA2 expression level observed in HMGA2-overexpression subtype leiomyoma. High-mobility group AT-hook 2-V5 expression resulted in differential expression of 1,612 genes (false discovery rate [FDR] < 0.05) that were found to be enriched in pathways associated with leiomyoma formation, including extracellular matrix organization. Comparative gene expression analysis between HMGA2-V5 engineered primary cells and HMGA2-overexpression subtype leiomyoma revealed significant overlap of differentially expressed genes. Mechanistically, HMGA2-V5 overexpression resulted in 41,323 regions with differential H3K27ac deposition (FDR < 0.05) and 205,605 regions of altered chromatin accessibility (FDR < 0.05). Transcription factor binding site analysis implicated the AP-1 family of transcription factors. CONCLUSION(S) High-mobility group AT-hook 2 overexpression induces leiomyoma-like transcriptomic and epigenomic modulations in myometrial cells.
Collapse
Affiliation(s)
- Priyanka Saini
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Austin G. Holmes
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian-Jun Wei
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - J. Brandon Parker
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
5
|
Ruan J, Tian Q, Li S, Zhou X, Sun Q, Wang Y, Xiao Y, Li M, Chang K, Yi X. The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial-mesenchymal transition by phosphorylating β-catenin. Cell Commun Signal 2024; 22:318. [PMID: 38858740 PMCID: PMC11163813 DOI: 10.1186/s12964-024-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES Interleukin 33 (IL-33) is a crucial inflammatory factor that functions as an alarm signal in endometriosis (EMs). Epithelial-mesenchymal transition (EMT), a process related to inflammatory signals, intracellular reactive oxygen species (ROS) production, and lipid peroxidation, have been proposed as potential mechanisms that contribute to the development and progression of EMs. IL-33 is highly upregulated in the ectopic milieu. Moreover, ectopic endometrial cells constitutively express interleukin-33 receptor ST2 (IL-33R). However, the role of IL-33/ST2 in the EMT of EMs remains largely unknown. In this study, we aimed to mechanistically determine the role of IL-33/ST2 in EMs-associated fibrosis. MATERIALS AND METHODS We established a non-lethal oxidative stress model to explore the conditions that trigger IL-33 induction. We performed α-smooth muscle actin (α-SMA) protein detection, cell counting kit-8 (CCK-8) assays, and scratch assays to analyze the impact of IL-33 on primary endometrial stromal cells (ESCs) proliferation and invasion. Clinical samples from patients with or without EMs were subjected to immunohistochemical (IHC) and and immunofluorescence(IF) staining to assess the clinical relevance of IL-33 receptor ST2 and EMT-related proteins. Furthermore, we used the ectopic human endometrial epithelial cell line 12Z and normal human epithelial cell line EEC to evaluate the effects of IL-33 on Wnt/β-catenin signaling. The effect of IL-33 on EMT-associated fibrosis was validated in vivo by intraperitoneal injections of IL-33 and antiST2. RESULTS We observed that ectopic milieu, characterized by ROS, TGF-β1, and high level of estrogen, triggers the secretion of IL-33 from ectopic ESCs. Ectopic endometrial lesions exhibited higher level of fibrotic characteristics and ST2 expression than that in the normal endometrium. Exogenous recombinant human (rhIL-33) enhanced ESC migration and survival. Similarly, 12Z cells displayed a higher degree of EMT characteristics with elevated expression of CCN4 and Fra-1, downstream target genes of the WNT/β-catenin pathway, than that observed in EECs. Conversely, blocking IL-33 with neutralizing antibodies, knocking down ST2 or β-catenin with siRNA, and β-catenin dephosphorylation abolished its effects on EMT promotion. In vivo validation demonstrated that IL-33 significantly promotes EMs-related fibrosis through the activation of Wnt/β-catenin signaling. CONCLUSION Our data strongly support the vital role of the IL-33/ST2 pathway in EMs-associated fibrosis and emphasize the importance of the EMT in the pathophysiology of fibrosis. Targeting the IL-33/ST2/Wnt/β-catenin axis may hold promise as a feasible therapeutic approach for controlling fibrosis in EMs.
Collapse
Affiliation(s)
- Jingyao Ruan
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Qi Tian
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Siting Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Xiaoyu Zhou
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Qianzhi Sun
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Yuning Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Yinping Xiao
- Department of Pathology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
6
|
Ramar V, Guo S, Hudson B, Khedri A, Guo AA, Li J, Liu M. Interaction of NF-κB and FOSL1 drives glioma stemness. Cell Mol Life Sci 2024; 81:255. [PMID: 38856747 PMCID: PMC11335291 DOI: 10.1007/s00018-024-05293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.
Collapse
Affiliation(s)
- Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr, New Orleans, LA, USA
| | - Breanna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Alyssa A Guo
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Jason Li
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
7
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
8
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
9
|
Zhang XY, Li RC, Xu C, Li XM. Regulation of Dihydroartemisinin on the pathological progression of laryngeal carcinoma through the periostin/YAP/IL-6 pathway. Heliyon 2024; 10:e27494. [PMID: 38515687 PMCID: PMC10955237 DOI: 10.1016/j.heliyon.2024.e27494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Objective Laryngeal cancer (LC) is one of the most common squamous cell carcinomas of the head and neck in clinical practice, and its incidence has been increasing in recent years, but the prognosis of the patients is not favorable. Hence, it is critical to re-understand and deeply study the causes and mechanisms of LC and explore new effective treatment methods and strategies. In this study, we analyzed the effect of Dihydroartemisinin (DHA) on the pathological progression of LC through the periostin (POSTN)/Yes-associated protein (YAP)/interleukin (IL)-6 pathway, which can provide new clinical references and guidelines. Methods POSTN, YAP, and IL-6 levels in 18 pairs of fresh LC tissues and adjacent counterparts in our hospital were detected. Additionally, LC TU686 cell line was purchased for DHA treatment of various concentrations to detect changes in cell biological behavior. Finally, we built a tumor-bearing mouse model with C57BL/6 mice and intragastrically administrated DHA to the animals to observe the growth of living tumors and to measure POSTN, YAP, and IL-6 expression in tumor tissues. Results As indicated by PCR, Western blotting, and immunohistochemistry, POSTN, YAP, and IL-6 presented higher expression in LC tissues than in adjacent counterparts. In cell experiments, the cloning rate of LC cells decreased and the apoptosis rate increased after DHA intervention, with 160 μmol/L DHA contributing to the most significant effect on LC activity inhibition. Furthermore, DHA-intervened cells exhibited markedly reduced POSTN, YAP, and IL-6 levels. Finally, the tumorigenesis experiment in nude mice showed inhibited tumor growth after DHA administration. And consistently, the expressions of POSTN, YAP, and IL-6 in living tumors decreased. Conclusions DHA can inhibit POSTN/YAP/IL-6 transduction, accelerate LC cell apoptosis, and alleviate the malignant progression of LC.
Collapse
Affiliation(s)
- Xin-yu Zhang
- Graduate School of Hebei Medical University, 050000, Shijiazhuang, China
- Department of Otolaryngology, Head and Neck Surgery, NO.980 Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, 050000, Shijiazhuang, China
- Department of Otolaryngology, Baoding No.1 Central Hospital, 071000, Baoding, China
| | - Rui-cong Li
- Department of Otolaryngology, Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Cong Xu
- Department of Otolaryngology, Head and Neck Surgery, NO.980 Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, 050000, Shijiazhuang, China
| | - Xiao-ming Li
- Department of Otolaryngology, Head and Neck Surgery, NO.980 Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, 050000, Shijiazhuang, China
| |
Collapse
|
10
|
Carroll C, Manaprasertsak A, Boffelli Castro A, van den Bos H, Spierings DC, Wardenaar R, Bukkuri A, Engström N, Baratchart E, Yang M, Biloglav A, Cornwallis CK, Johansson B, Hagerling C, Arsenian-Henriksson M, Paulsson K, Amend SR, Mohlin S, Foijer F, McIntyre A, Pienta KJ, Hammarlund EU. Drug-resilient Cancer Cell Phenotype Is Acquired via Polyploidization Associated with Early Stress Response Coupled to HIF2α Transcriptional Regulation. CANCER RESEARCH COMMUNICATIONS 2024; 4:691-705. [PMID: 38385626 PMCID: PMC10919208 DOI: 10.1158/2767-9764.crc-23-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Therapeutic resistance and recurrence remain core challenges in cancer therapy. How therapy resistance arises is currently not fully understood with tumors surviving via multiple alternative routes. Here, we demonstrate that a subset of cancer cells survives therapeutic stress by entering a transient state characterized by whole-genome doubling. At the onset of the polyploidization program, we identified an upregulation of key transcriptional regulators, including the early stress-response protein AP-1 and normoxic stabilization of HIF2α. We found altered chromatin accessibility, ablated expression of retinoblastoma protein (RB1), and enrichment of AP-1 motif accessibility. We demonstrate that AP-1 and HIF2α regulate a therapy resilient and survivor phenotype in cancer cells. Consistent with this, genetic or pharmacologic targeting of AP-1 and HIF2α reduced the number of surviving cells following chemotherapy treatment. The role of AP-1 and HIF2α in stress response by polyploidy suggests a novel avenue for tackling chemotherapy-induced resistance in cancer. SIGNIFICANCE In response to cisplatin treatment, some surviving cancer cells undergo whole-genome duplications without mitosis, which represents a mechanism of drug resistance. This study presents mechanistic data to implicate AP-1 and HIF2α signaling in the formation of this surviving cell phenotype. The results open a new avenue for targeting drug-resistant cells.
Collapse
Affiliation(s)
- Christopher Carroll
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Auraya Manaprasertsak
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Arthur Boffelli Castro
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anuraag Bukkuri
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Niklas Engström
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Etienne Baratchart
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Andrea Biloglav
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Catharina Hagerling
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| | - Marie Arsenian-Henriksson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R. Amend
- Cancer Ecology Center, the Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sofie Mohlin
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Alan McIntyre
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kenneth J. Pienta
- Cancer Ecology Center, the Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emma U. Hammarlund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
- Lund University Cancer Center (LUCC), Lund University, Lund, Sweden
| |
Collapse
|
11
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
12
|
Xu X, Bok I, Jasani N, Wang K, Chadourne M, Mecozzi N, Deng O, Welsh EA, Kinose F, Rix U, Karreth FA. PTEN Lipid Phosphatase Activity Suppresses Melanoma Formation by Opposing an AKT/mTOR/FRA1 Signaling Axis. Cancer Res 2024; 84:388-404. [PMID: 38193852 PMCID: PMC10842853 DOI: 10.1158/0008-5472.can-23-1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Manon Chadourne
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Ou Deng
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Rampioni Vinciguerra GL, Capece M, Scafetta G, Rentsch S, Vecchione A, Lovat F, Croce CM. Role of Fra-2 in cancer. Cell Death Differ 2024; 31:136-149. [PMID: 38104183 PMCID: PMC10850073 DOI: 10.1038/s41418-023-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Sydney Rentsch
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Wang Q, Zhen W, Lippi G, Liu Q. The effect of Astragali Radix-Radix Angelica Sinensis on acute kidney injury: a network pharmacology and molecular docking study. Transl Androl Urol 2024; 13:91-103. [PMID: 38404557 PMCID: PMC10891378 DOI: 10.21037/tau-23-562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Background Acute kidney injury (AKI) is a devastating clinical syndrome with high mortality rate attributed to lack of effective treatment. The herbal pair of Astragali Radix (AR) and Radix Angelica Sinensis (RAS) is a commonly prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions for the treatment of kidney diseases. AR-RAS has certain protective effects on AKI in experiments, but the relevant mechanisms have yet to be clear. So this study aims to explore the mechanism of action of AR-RAS in AKI by combining network pharmacology and molecular docking methods. Methods In Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the major AR-RAS chemical components and associated action targets were found and screened. The DrugBank and GeneCards databases were used to find AKI-related targets. The targets that are in close relationship with AKI were obtained from Therapeutic Target database (TTD), Online Mendelian Inheritance in Man (OMIM), and PharmGKB databases. The "herb-active ingredient-target" network was drawn by Cytoscape 3.8.0 software. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to build the protein-protein interaction network. Bioconductor/R was used to examine Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. AR-RAS components and critical targets were docked using the AutoDock Vina program. Results A compound-target network, built by screening and analyzing the results, allowed to identify 19 active components and 101 possible therapeutic targets for AKI. The main ingredients were quercetin, kaempferol, 7-o-methylisocronulatol, formononetin and isorhamnetin. The key targets included AKT serine/threonine kinase 1 (AKT1), nuclear receptor coactivator 1 (NCOA1), JUN, estrogen receptor alpha (ESR1) and mitogen-activated protein kinase 8 (MAPK8). These molecules are targeted by pathways such as the calcium signaling route, the tumor necrosis factor (TNF) signaling pathway and the interleukin-17 (IL-17) signaling pathway, as well as the development of T helper 17 cells. Molecular docking demonstrated that AR-active RAS components exhibited strong binding activities to probable targets of AKI. Conclusions We described here the potential active ingredients, possible targets responsible for the efficacy of AR-RAS in AKI treatment, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Qin Wang
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenrui Zhen
- Department of Intervention Therapy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Qi Liu
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
15
|
Costa V, Giovannetti E, Lonardo E. Revolutionizing Cancer Treatment: Unveiling New Frontiers by Targeting the (Un)Usual Suspects. Cancers (Basel) 2023; 16:132. [PMID: 38201558 PMCID: PMC10778478 DOI: 10.3390/cancers16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This Special Issue includes original articles and reviews on both established and innovative approaches to cancer targeting, showcased at the 29th IGB Workshop titled "Targeting the (un)usual suspects in cancer" "https://29thigbworkshop [...].
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), 80131 Naples, Italy;
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56124 Pisa, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), 80131 Naples, Italy;
| |
Collapse
|
16
|
Manetsch P, Böhi F, Nowak K, Leslie Pedrioli DM, Hottiger MO. PARP7-mediated ADP-ribosylation of FRA1 promotes cancer cell growth by repressing IRF1- and IRF3-dependent apoptosis. Proc Natl Acad Sci U S A 2023; 120:e2309047120. [PMID: 38011562 DOI: 10.1073/pnas.2309047120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.
Collapse
Affiliation(s)
- Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
von Stromberg K, Seddar L, Ip WH, Günther T, Gornott B, Weinert SC, Hüppner M, Bertzbach LD, Dobner T. The human adenovirus E1B-55K oncoprotein coordinates cell transformation through regulation of DNA-bound host transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2310770120. [PMID: 37883435 PMCID: PMC10622919 DOI: 10.1073/pnas.2310770120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Collapse
Affiliation(s)
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Günther
- Virus Genomics, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Sophie-Celine Weinert
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Max Hüppner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| |
Collapse
|
18
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
19
|
Guo S, Ramar V, Guo AA, Saafir T, Akpobiyeri H, Hudson B, Li J, Liu M. TRPM7 transactivates the FOSL1 gene through STAT3 and enhances glioma stemness. Cell Mol Life Sci 2023; 80:270. [PMID: 37642779 PMCID: PMC10465393 DOI: 10.1007/s00018-023-04921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION We previously reported that TRPM7 regulates glioma cells' stemness through STAT3. In addition, we demonstrated that FOSL1 is a response gene for TRPM7, and the FOSL1 gene serves as an oncogene to promote glioma proliferation and invasion. METHODS In the present study, we determined the effects of FOSL1 on glioma stem cell (GSC) markers CD133 and ALDH1 by flow cytometry, and the maintenance of stem cell activity by extreme limiting dilution assays (ELDA). To further gain insight into the mechanism by which TRPM7 activates transcription of the FOSL1 gene to contribute to glioma stemness, we constructed a FOSL1 promoter and its GAS mutants followed by luciferase reporter assays and ChIP-qPCR in a glioma cell line and glioma patient-derived xenoline. We further examined GSC markers ALDH1 and TRPM7 as well as FOSL1 by immunohistochemistry staining (IHC) in brain tissue microarray (TMA) of glioma patients. RESULTS We revealed that FOSL1 knockdown reduces the expression of GSC markers CD133 and ALDH1, and FOSL1 is required to maintain stem cell activity in glioma cells. The experiments also showed that mutations of - 328 to - 336 and - 378 to - 386 GAS elements markedly reduced FOSL1 promoter activity. Constitutively active STAT3 increased while dominant-negative STAT3 decreased FOSL1 promoter activity. Furthermore, overexpression of TRPM7 enhanced while silencing of TRPM7 reduced FOSL1 promoter activity. ChIP-qPCR assays revealed that STAT3, present in nuclear lysates of glioma cells stimulated by constitutively activated STAT3, can bind to two GAS elements, respectively. We demonstrated that deacetylation of FOSL1 at the Lys-116 residue located within its DNA binding domain led to an increase in FOSL1 transcriptional activity. We found that the expression of TRPM7, ALDH1, and FOSL1 protein is associated with grades of malignant glioma, and TRPM7 protein expression correlates to the expression of ALDH1 and FOSL1 in glioma patients. CONCLUSIONS These combined results demonstrated that TRPM7 induced FOSL1 transcriptional activation, which is mediated by the action of STAT3, a mechanism shown to be important in glioma stemness. These results indicated that FOSL1, similar to GSC markers ALDH1 and TRPM7, is a diagnostic marker and potential drug target for glioma patients.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr, New Orleans, LA, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Alyssa A Guo
- University of South Carolina SOM Greenville, Greenville, SC, USA
| | - Talib Saafir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Hannah Akpobiyeri
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Breanna Hudson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Jason Li
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
20
|
Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol 2023; 14:1224892. [PMID: 37483616 PMCID: PMC10361657 DOI: 10.3389/fimmu.2023.1224892] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yan Lian
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
21
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
22
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
24
|
Pi Z, Qiu X, Liu J, Shi Y, Zeng Z, Xiao R. Activating Protein-1 (AP-1): A Promising Target for the Treatment of Fibrotic Diseases. Curr Med Chem 2023; 31:CMC-EPUB-129375. [PMID: 36757030 DOI: 10.2174/0929867330666230209100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
The fibrosis of tissues and organs occurs via an aberrant tissue remodeling process characterized by an excessive deposition of extracellular matrix, which can lead to organ dysfunction, organ failure, and death. Because the pathogenesis of fibrosis remains unclear and elusive, there is currently no medication to reverse it; hence, this process deserves further study. Activating protein-1 (AP-1)-comprising Jun (c-Jun, JunB, JunD), Fos (c-fos, FosB, Fra1, and Fra2), and activating transcription factor-is a versatile dimeric transcription factor. Numerous studies have demonstrated that AP-1 plays a crucial role in advancing tissue and organ fibrosis via induction of the expression of fibrotic molecules and activating fibroblasts. This review focuses on the role of AP-1 in a range of fibrotic disorders as well as on the antifibrotic effects of AP-1 inhibitors. It also discusses the potential of AP-1 as a new therapeutic target in conditions involving tissue and organ fibrosis.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Medical Genetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Second Xiangya Hospital of Central South University Department of Dermatology Changsha China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
25
|
Synovial Fluid Derived from Human Knee Osteoarthritis Increases the Viability of Human Adipose-Derived Stem Cells through Upregulation of FOSL1. Cells 2023; 12:cells12020330. [PMID: 36672268 PMCID: PMC9856741 DOI: 10.3390/cells12020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Knee osteoarthritis (Knee OA) is an irreversible condition that causes bone deformity and degeneration of the articular cartilage that comprises the joints, resulting in chronic pain and movement disorders. The administration of cultured adipose-derived stem cells (ADSCs) into the knee joint cavity improves the clinical symptoms of Knee OA; however, the effect of synovial fluid (SF) filling the joint cavity on the injected ADSCs remains unclear. In this study, we investigated the effect of adding SF from Knee OA patients to cultured ADSCs prepared for therapeutic use in an environment that mimics the joint cavity. An increase in the viability of ADSCs was observed following the addition of SF. Gene expression profiling of SF-treated ADSCs using DNA microarrays revealed changes in several genes involved in cell survival. Of these genes, we focused on FOSL1, which is involved in the therapeutic effect of ADSCs and the survival and proliferation of cancer stem cells. We confirmed the upregulation of FOSL1 mRNA and protein expression using RT-PCR and western blot analysis, respectively. Next, we knocked down FOSL1 in ADSCs using siRNA and observed a decrease in cell viability, indicating the involvement of FOSL1 in the survival of ADSCs. Interestingly, in the knockdown cells, ADSC viability was also decreased by SF exposure. These results suggest that SF enhances cell viability by upregulating FOSL1 expression in ADSCs. For therapy using cultured ADSCs, the therapeutic effect of ADSCs may be further enhanced if an environment more conducive to the upregulation of FOSL1 expression in ADSCs can be established.
Collapse
|