1
|
Kwon WA. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci 2024; 39:e320. [PMID: 39536791 PMCID: PMC11557252 DOI: 10.3346/jkms.2024.39.e320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In the past decade, the treatment of metastatic urothelial cancer (mUC), including bladder cancer (BC), has transformed significantly with the introduction of diverse therapies, such as immune checkpoint inhibitors, targeted therapies, and antibody-drug conjugates. This change is partly due to advancements in genomic understanding, particularly next-generation sequencing, which has identified numerous mutations in UC. Among these therapies, erdafitinib, a pan-fibroblast growth factor receptor (FGFR) inhibitor for specific FGFR2 and FGFR3 alterations, is the only targeted therapy approved till now. In 2019, erdafitinib became pivotal for the treatment of mUC, particularly in patients with specific FGFR alterations. Recent studies have highlighted the benefits of combining erdafitinib with immunotherapy, thereby broadening the treatment options. Ongoing investigations exist on its use in non-muscle-invasive BC and in combination with drugs such as enfortumab vedotin in mUC. Other FGFR-targeted agents are under development; however, overcoming FGFR resistance and ensuring the safety of combination therapies remain major hurdles. FGFR3 mutations are particularly prevalent in BC, a heterogeneous form of UC, and account for a considerable proportion of new cancer diagnoses annually. Approximately half of these cancers have FGFR3 mutations, with gene rearrangements being a common feature. These FGFR3 genomic alterations often occur independently of mutations in other BC oncogenes, such as TP53 and RB1. This review emphasizes the importance of FGFR inhibition in UC and the optimization of its use in clinical practice. Moreover, it underscores the ongoing efforts to evaluate combination strategies and early treatment testing to enhance the effectiveness of targeted therapies for UC.
Collapse
MESH Headings
- Humans
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Pyrazoles/therapeutic use
- Mutation
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Quinoxalines/therapeutic use
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Immunotherapy
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/genetics
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea.
| |
Collapse
|
2
|
Akand M, Jatsenko T, Muilwijk T, Gevaert T, Joniau S, Van der Aa F. Deciphering the molecular heterogeneity of intermediate- and (very-)high-risk non-muscle-invasive bladder cancer using multi-layered -omics studies. Front Oncol 2024; 14:1424293. [PMID: 39497708 PMCID: PMC11532112 DOI: 10.3389/fonc.2024.1424293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 11/07/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary tract. About 75% of all BC patients present with non-muscle-invasive BC (NMIBC), of which up to 70% will recur, and 15% will progress in stage and grade. As the recurrence and progression rates of NMIBC are strongly associated with some clinical and pathological factors, several risk stratification models have been developed to individually predict the short- and long-term risks of disease recurrence and progression. The NMIBC patients are stratified into four risk groups as low-, intermediate-, high-risk, and very high-risk by the European Association of Urology (EAU). Significant heterogeneity in terms of oncological outcomes and prognosis has been observed among NMIBC patients within the same EAU risk group, which has been partly attributed to the intrinsic heterogeneity of BC at the molecular level. Currently, we have a poor understanding of how to distinguish intermediate- and (very-)high-risk NMIBC with poor outcomes from those with a more benign disease course and lack predictive/prognostic tools that can specifically stratify them according to their pathologic and molecular properties. There is an unmet need for developing a more accurate scoring system that considers the treatment they receive after TURBT to enable their better stratification for further follow-up regimens and treatment selection, based also on a better response prediction to the treatment. Based on these facts, by employing a multi-layered -omics (namely, genomics, epigenetics, transcriptomics, proteomics, lipidomics, metabolomics) and immunohistopathology approach, we hypothesize to decipher molecular heterogeneity of intermediate- and (very-)high-risk NMIBC and to better stratify the patients with this disease. A combination of different -omics will provide a more detailed and multi-dimensional characterization of the tumor and represent the broad spectrum of NMIBC phenotypes, which will help to decipher the molecular heterogeneity of intermediate- and (very-)high-risk NMIBC. We think that this combinatorial multi-omics approach has the potential to improve the prediction of recurrence and progression with higher precision and to develop a molecular feature-based algorithm for stratifying the patients properly and guiding their therapeutic interventions in a personalized manner.
Collapse
Affiliation(s)
- Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Tonni E, Oltrecolli M, Pirola M, Tchawa C, Roccabruna S, D'Agostino E, Matranga R, Piombino C, Pipitone S, Baldessari C, Bacchelli F, Dominici M, Sabbatini R, Vitale MG. New Advances in Metastatic Urothelial Cancer: A Narrative Review on Recent Developments and Future Perspectives. Int J Mol Sci 2024; 25:9696. [PMID: 39273642 PMCID: PMC11395814 DOI: 10.3390/ijms25179696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The standard of care for advanced or metastatic urothelial carcinoma (mUC) was historically identified with platinum-based chemotherapy. Thanks to the advances in biological and genetic knowledge and technologies, new therapeutic agents have emerged in this setting recently: the immune checkpoint inhibitors and the fibroblast growth factor receptor inhibitors as the target therapy for patients harboring alterations in the fibroblast growth factor receptor (FGFR) pathway. However, chasing a tumor's tendency to recur and progress, a new class of agents has more recently entered the scene, with promising results. Antibody-drug conjugates (ADCs) are in fact the latest addition, with enfortumab vedotin being the first to receive accelerated approval by the U.S. Food and Drug Administration in December 2019, followed by sacituzumab govitecan. Many other ADCs are still under investigation. ADCs undoubtedly represent the new frontier, with the potential of transforming the management of mUC treatment in the future. Therefore, we reviewed the landscape of mUC treatment options, giving an insight into the molecular basis and mechanisms, and evaluating new therapeutic strategies in the perspective of more and more personalized treatments.
Collapse
Affiliation(s)
- Elena Tonni
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Marta Pirola
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Cyrielle Tchawa
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Sara Roccabruna
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Elisa D'Agostino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Rossana Matranga
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Claudia Piombino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Francesca Bacchelli
- Clinical Trials Office, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
4
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
5
|
Ronan K, Jordan E, Leonard C, McDermott R. Frequency of next-generation sequencing, prevalence of targetable mutations and response to targeted therapies amongst patients with metastatic urothelial cancer in Ireland: a multi-centre retrospective study of real-world data. Ir J Med Sci 2024; 193:1155-1161. [PMID: 37947995 DOI: 10.1007/s11845-023-03569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The genomic knowledge on urothelial carcinoma is expanding. It is recognised that urothelial carcinoma is a disease with a high somatic mutation rate and a high prevalence of genetic alterations, as discussed by Thomas and Sonpavde (2022). In the context of a disease rich with somatic alterations, continuing efforts to better identify which patients may benefit most from targeted therapy, immunotherapy and combination therapy may ultimately lead to improved outcomes for patients with this disease. AIMS We aimed to ascertain the frequency of next-generation sequencing (NGS) and the prevalence of genomic alterations amongst patients with metastatic urothelial cancer (mUC) in Ireland. We studied patients who received a targeted therapy following the detection of an oncogenic alteration on NGS and assessed their outcomes. METHODS Patients with a diagnosis of mUC between 2017 and 2022 were identified from Urology MDT databases as well as pharmacy databases across three Irish cancer centres. A retrospective review of patient notes including a comprehensive review of histopathology, radiology data, prior therapies and NGS reports was carried out for each patient. RESULTS 111 patients diagnosed with mUC between 2017 and 2022 were identified for inclusion across three hospital sites. NGS was carried out on the tumour specimens of 66 patients (59%). Thirty-six potentially therapeutically targetable alterations were identified amongst thirty-five patients. The most frequent alterations identified were PIK3CA mutations, FGFR3 mutations or fusions and ERBB2 somatic mutations. Fifteen patients (13.5%) received therapy directed at a genetic alteration. The most common targeted therapy received was erdafitinib (60%) followed by trastuzumab (33%) with one patient receiving alpelisib monotherapy. The median duration of treatment with targeted therapy was 3 months (range 1-34 months). Two patients were observed to have durable responses to erdafitinib approaching 3 years duration. CONCLUSIONS This study provides an understanding of the use of NGS and prevalence of genomic alterations in an Irish patient population.
Collapse
Affiliation(s)
- Karine Ronan
- Department of Medical Oncology, University Hospital Waterford, Waterford, Ireland.
| | - Emmet Jordan
- Department of Medical Oncology, University Hospital Waterford, Waterford, Ireland
| | - Christine Leonard
- Department of Medical Oncology, Tallaght University Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St Vincent's University Hospital; Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Abstract
Bladder cancer remains a leading cause of cancer death worldwide and is associated with substantial impacts on patient quality of life, morbidity, mortality, and cost to the healthcare system. Gross hematuria frequently precedes the diagnosis of bladder cancer. Non-muscle-invasive bladder cancer (NMIBC) is managed initially with transurethral resection of a bladder tumor (TURBT), followed by a risk stratified approach to adjuvant intravesical therapy (IVe), and is associated with an overall survival of 90%. However, cure rates remain lower for muscle invasive bladder cancer (MIBC) owing to a variety of factors. NMIBC and MIBC groupings are heterogeneous and have unique pathological and molecular characteristics. Indeed, The Cancer Genome Atlas project identified genetic drivers and luminal and basal molecular subtypes of MIBC with distinct treatment responses. For NMIBC, IVe immunotherapy (primarily BCG) is the gold standard treatment for high grade and high risk NMIBC to reduce or prevent both recurrence and progression after initial TURBT; novel trials incorporate immune checkpoint inhibitors. IVe gene therapy and combination IVe chemotherapy have recently been completed, with promising results. For localized MIBC, essential goals are improving care and reducing morbidity following cystectomy or bladder preserving strategies. In metastatic disease, advances in understanding of the genomic landscape and tumor microenvironment have led to the implementation of immune checkpoint inhibitors, targeted treatments, and antibody-drug conjugates. Defining better selection criteria to identify the patients most likely to benefit from a specific treatment is an urgent need.
Collapse
Affiliation(s)
- Antonio Lopez-Beltran
- Department of Morphological Sciences, Unit of Anatomic Pathology, University of Cordoba Medical School, Cordoba, Spain
| | - Michael S Cookson
- Department of Urology, University of Oklahoma Health Sciences Center and the Stephenson Cancer Center, Oklahoma City, OK, US
| | - Brendan J Guercio
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, US
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University, Providence, RI, US
- Legorreta Cancer Center, Brown University
- Lifespan Health Care System, Brown University
| |
Collapse
|
8
|
Viergever BJ, Raats DAE, Geurts V, Mullenders J, Jonges TN, van der Heijden MS, van Es JH, Kranenburg O, Meijer RP. Urine-derived bladder cancer organoids (urinoids) as a tool for cancer longitudinal response monitoring and therapy adaptation. Br J Cancer 2024; 130:369-379. [PMID: 38102228 PMCID: PMC10844626 DOI: 10.1038/s41416-023-02494-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common cancer types worldwide. Generally, research relies on invasive sampling strategies. METHODS Here, we generate bladder cancer organoids directly from urine (urinoids). In this project, we establish 12 urinoid lines from 22 patients with non-muscle and muscle-invasive bladder tumours, with an efficiency of 55%. RESULTS The histopathological features of the urinoids accurately resemble those of the original bladder tumours. Genetically, there is a high concordance of single nucleotide polymorphisms (92.56%) and insertions & deletions (91.54%) between urinoids and original tumours from patient 4. Furthermore, these urinoids show sensitivity to bladder cancer drugs, similar to their tissue-derived organoid counterparts. Genetic analysis of longitudinally generated tumoroids and urinoids from one patient receiving systemic immunotherapy, identify alterations that may guide the choice for second-line therapy. Successful treatment adaptation was subsequently demonstrated in the urinoid setting. CONCLUSION Therefore, urinoids can advance precision medicine in bladder cancer as a non-invasive platform for tumour pathogenesis, longitudinal drug-response monitoring, and therapy adaptation.
Collapse
Affiliation(s)
- Bastiaan J Viergever
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Department of Oncological Urology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Daniëlle A E Raats
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Veerle Geurts
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Jasper Mullenders
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Trudy N Jonges
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Johan H van Es
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Richard P Meijer
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands.
- Department of Oncological Urology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Lasota M, Jankowski D, Wiśniewska A, Sarna M, Kaczor-Kamińska M, Misterka A, Szczepaniak M, Dulińska-Litewka J, Górecki A. The Potential of Congo Red Supplied Aggregates of Multitargeted Tyrosine Kinase Inhibitor (Sorafenib, BAY-43-9006) in Enhancing Therapeutic Impact on Bladder Cancer. Int J Mol Sci 2023; 25:269. [PMID: 38203437 PMCID: PMC10779242 DOI: 10.3390/ijms25010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Bladder cancer is a common malignancy associated with high recurrence rates and potential progression to invasive forms. Sorafenib, a multi-targeted tyrosine kinase inhibitor, has shown promise in anti-cancer therapy, but its cytotoxicity to normal cells and aggregation in solution limits its clinical application. To address these challenges, we investigated the formation of supramolecular aggregates of sorafenib with Congo red (CR), a bis-azo dye known for its supramolecular interaction. We analyzed different mole ratios of CR-sorafenib aggregates and evaluated their effects on bladder cancer cells of varying levels of malignancy. In addition, we also evaluated the effect of the test compounds on normal uroepithelial cells. Our results demonstrated that sorafenib inhibits the proliferation of bladder cancer cells and induces apoptosis in a dose-dependent manner. However, high concentrations of sorafenib also showed cytotoxicity to normal uroepithelial cells. In contrast, the CR-BAY aggregates exhibited reduced cytotoxicity to normal cells while maintaining anti-cancer activity. The aggregates inhibited cancer cell migration and invasion, suggesting their potential for metastasis prevention. Dynamic light scattering and UV-VIS measurements confirmed the formation of stable co-aggregates with distinctive spectral properties. These CR-sorafenib aggregates may provide a promising approach to targeted therapy with reduced cytotoxicity and improved stability for drug delivery in bladder cancer treatment. This work shows that the drug-excipient aggregates proposed and described so far, as Congo red-sorafenib, can be a real step forward in anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Lasota
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
| | - Daniel Jankowski
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Krakow, Poland;
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
| | - Anna Misterka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
| | - Mateusz Szczepaniak
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| |
Collapse
|
10
|
Komura K, Hirosuna K, Tokushige S, Tsujino T, Nishimura K, Ishida M, Hayashi T, Ura A, Ohno T, Yamazaki S, Nakamori K, Kinoshita S, Maenosono R, Ajiro M, Yoshikawa Y, Takai T, Tsutsumi T, Taniguchi K, Tanaka T, Takahara K, Konuma T, Inamoto T, Hirose Y, Ono F, Shiraishi Y, Yoshimi A, Azuma H. The Impact of FGFR3 Alterations on the Tumor Microenvironment and the Efficacy of Immune Checkpoint Inhibitors in Bladder Cancer. Mol Cancer 2023; 22:185. [PMID: 37980528 PMCID: PMC10657138 DOI: 10.1186/s12943-023-01897-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Currently, only limited knowledge is available regarding the phenotypic association between fibroblast growth factor receptor 3 (FGFR3) alterations and the tumor microenvironment (TME) in bladder cancer (BLCA). METHODS A multi-omics analysis on 389 BLCA and 35 adjacent normal tissues from a cohort of OMPU-NCC Consortium Japan was retrospectively performed by integrating the whole-exome and RNA-sequence dataset and clinicopathological record. A median follow-up duration of all BLCA cohort was 31 months. RESULTS FGFR3 alterations (aFGFR3), including recurrent mutations and fusions, accounted for 44% of non-muscle invasive bladder cancer (NMIBC) and 15% of muscle-invasive bladder cancer (MIBC). Within MIBC, the consensus subtypes LumP was significantly more prevalent in aFGFR3, whereas the Ba/Sq subtype exhibited similarity between intact FGFR3 (iFGFR3) and aFGFR3 cases. We revealed that basal markers were significantly increased in MIBC/aFGFR3 compared to MIBC/iFGFR3. Transcriptome analysis highlighted TIM3 as the most upregulated immune-related gene in iFGFR3, with differential immune cell compositions observed between iFGFR3 and aFGFR3. Using EcoTyper, TME heterogeneity was discerned even within aFGFR cases, suggesting potential variations in the response to checkpoint inhibitors (CPIs). Among 72 patients treated with CPIs, the objective response rate (ORR) was comparable between iFGFR3 and aFGFR3 (20% vs 31%; p = 0.467). Strikingly, a significantly higher ORR was noted in LumP/aFGFR3 compared to LumP/iFGFR3 (50% vs 5%; p = 0.022). This trend was validated using data from the IMvigor210 trial. Additionally, several immune-related genes, including IDO1, CCL24, IL1RL1, LGALS4, and NCAM (CD56) were upregulated in LumP/iFGFR3 compared to LumP/aFGFR3 cases. CONCLUSIONS Differential pathways influenced by aFGFR3 were observed between NMIBC and MIBC, highlighting the upregulation of both luminal and basal markers in MIBC/aFGFR3. Heterogeneous TME was identified within MIBC/aFGFR3, leading to differential outcomes for CPIs. Specifically, a favorable ORR in LumP/aFGFR3 and a poor ORR in LumP/iFGFR3 were observed. We propose TIM3 as a potential target for iFGFR3 (ORR: 20%) and several immune checkpoint genes, including IDO1 and CCL24, for LumP/iFGFR3 (ORR: 5%), indicating promising avenues for precision immunotherapy for BLCA.
Collapse
Affiliation(s)
- Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan.
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan.
| | - Kensuke Hirosuna
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho Kitaku, Okayama City, Okayama, 700-8558, Japan
| | - Satoshi Tokushige
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ayako Ura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takaya Ohno
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shogo Yamazaki
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Keita Nakamori
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shoko Kinoshita
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshikawa
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomoaki Takai
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takeshi Tsutsumi
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohito Tanaka
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, 1-98 Dengakugakubo, KutsukakeAichi, 470-1192, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumiku-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| |
Collapse
|
11
|
Santini D, Banna GL, Buti S, Isella L, Stellato M, Roberto M, Iacovelli R. Navigating the Rapidly Evolving Advanced Urothelial Carcinoma Treatment Landscape: Insights from Italian Experts. Curr Oncol Rep 2023; 25:1345-1362. [PMID: 37855848 PMCID: PMC10640402 DOI: 10.1007/s11912-023-01461-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances in the treatment of advanced urothelial carcinoma (UC) and how best to incorporate new therapies into clinical practice. RECENT FINDINGS There have been several recent practice-changing phase 2 and 3 trials of immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and targeted agents in advanced UC. Based on data from these trials, ICIs can be used as first-line maintenance therapy in patients who do not progress on platinum-based chemotherapy, second-line therapy for those with progression, and first-line therapy in cisplatin-ineligible patients with PD-L1 expression; ADCs and targeted agents provide later-line treatment options. Despite substantial progress in the treatment of advanced UC, there are still many uncertainties, including the optimal treatment sequence for novel agents, and reliable predictive biomarkers to aid in treatment selection. There is also an unmet need for effective treatment options in patients unfit for any platinum-based chemotherapy.
Collapse
Affiliation(s)
- Daniele Santini
- Medical Oncology A, University of Rome, Policlinico Umberto I, "La Sapienza, Rome, Italy
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, PO6 3LY, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126, Parma, Italy.
- Oncology Unit, University Hospital of Parma, Viale A. Gramsci 14, 43126, Parma, Italy.
| | - Luca Isella
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126, Parma, Italy
| | - Marco Stellato
- Medical Oncology Department, Fondazione IRCCS National Cancer Institute, Milan, Italy
| | - Michela Roberto
- UOC Oncology A, Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, "La Sapienza" University of Rome, Rome, Italy
| | - Roberto Iacovelli
- UOC Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Zuo M, Chen H, Liao Y, He P, Xu T, Tang J, Zhang N. Sulforaphane and bladder cancer: a potential novel antitumor compound. Front Pharmacol 2023; 14:1254236. [PMID: 37781700 PMCID: PMC10540234 DOI: 10.3389/fphar.2023.1254236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Bladder cancer (BC) is a common form of urinary tract tumor, and its incidence is increasing annually. Unfortunately, an increasing number of newly diagnosed BC patients are found to have advanced or metastatic BC. Although current treatment options for BC are diverse and standardized, it is still challenging to achieve ideal curative results. However, Sulforaphane, an isothiocyanate present in cruciferous plants, has emerged as a promising anticancer agent that has shown significant efficacy against various cancers, including bladder cancer. Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells. Additionally, it can inhibit BC gluconeogenesis and demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens. Sulforaphane has also been found to exert anticancer activity and inhibit bladder cancer stem cells by mediating multiple pathways in BC, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), zonula occludens-1 (ZO-1)/beta-catenin (β-Catenin), miR-124/cytokines interleukin-6 receptor (IL-6R)/transcription 3 (STAT3). This article provides a comprehensive review of the current evidence and molecular mechanisms of Sulforaphane against BC. Furthermore, we explore the effects of Sulforaphane on potential risk factors for BC, such as bladder outlet obstruction, and investigate the possible targets of Sulforaphane against BC using network pharmacological analysis. This review is expected to provide a new theoretical basis for future research and the development of new drugs to treat BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Wang Z, Muthusamy V, Petrylak DP, Anderson KS. Tackling FGFR3-driven bladder cancer with a promising synergistic FGFR/HDAC targeted therapy. NPJ Precis Oncol 2023; 7:70. [PMID: 37479885 PMCID: PMC10362036 DOI: 10.1038/s41698-023-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/23/2023] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies worldwide and FGFR3 alterations are particularly common in BC. Despite approval of erdafitinib, durable responses for FGFR inhibitors are still uncommon and most patients relapse to metastatic disease. Given the necessity to discover more efficient therapies for BC, herein, we sought to explore promising synergistic combinations for BC with FGFR3 fusions. Our studies confirmed the synergy between FGFR and HDAC inhibitors in vitro and demonstrated its benefits in vivo. Mechanistic studies revealed that quisinostat can downregulate FGFR3 expression by suppressing FGFR3 translation. Additionally, quisinostat can also sensitize BC cells to erdafitinib by downregulating HDGF. Furthermore, the synergy was also confirmed in BC cells with FGFR3 S249C. This study discovers a new avenue for treatment of FGFR3-driven BC and uncovers new mechanistic insights. These preclinical studies pave the way for a direct translation of this combination to early phase clinical trials.
Collapse
Affiliation(s)
- Zechen Wang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | | | | | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
16
|
Dhawan D, Ramos-Vara JA, Utturkar SM, Ruple A, Tersey SA, Nelson JB, Cooper B, Heng HG, Ostrander EA, Parker HG, Hahn NM, Adams LG, Fulkerson CM, Childress MO, Bonney P, Royce C, Fourez LM, Enstrom AW, Ambrosius LA, Knapp DW. Identification of a naturally-occurring canine model for early detection and intervention research in high grade urothelial carcinoma. Front Oncol 2022; 12:1011969. [PMID: 36439482 PMCID: PMC9692095 DOI: 10.3389/fonc.2022.1011969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 09/23/2023] Open
Abstract
Background Early detection and intervention research is expected to improve the outcomes for patients with high grade muscle invasive urothelial carcinoma (InvUC). With limited patients in suitable high-risk study cohorts, relevant animal model research is critical. Experimental animal models often fail to adequately represent human cancer. The purpose of this study was to determine the suitability of dogs with high breed-associated risk for naturally-occurring InvUC to serve as relevant models for early detection and intervention research. The feasibility of screening and early intervention, and similarities and differences between canine and human tumors, and early and later canine tumors were determined. Methods STs (n=120) ≥ 6 years old with no outward evidence of urinary disease were screened at 6-month intervals for 3 years with physical exam, ultrasonography, and urinalysis with sediment exam. Cystoscopic biopsy was performed in dogs with positive screening tests. The pathological, clinical, and molecular characteristics of the "early" cancer detected by screening were determined. Transcriptomic signatures were compared between the early tumors and published findings in human InvUC, and to more advanced "later" canine tumors from STs who had the typical presentation of hematuria and urinary dysfunction. An early intervention trial of an oral cyclooxygenase inhibitor, deracoxib, was conducted in dogs with cancer detected through screening. Results Biopsy-confirmed bladder cancer was detected in 32 (27%) of 120 STs including InvUC (n=29, three starting as dysplasia), grade 1 noninvasive cancer (n=2), and carcinoma in situ (n=1). Transcriptomic signatures including druggable targets such as EGFR and the PI3K-AKT-mTOR pathway, were very similar between canine and human InvUC, especially within luminal and basal molecular subtypes. Marked transcriptomic differences were noted between early and later canine tumors, particularly within luminal subtype tumors. The deracoxib remission rate (42% CR+PR) compared very favorably to that with single-agent cyclooxygenase inhibitors in more advanced canine InvUC (17-25%), supporting the value of early intervention. Conclusions The study defined a novel naturally-occurring animal model to complement experimental models for early detection and intervention research in InvUC. Research incorporating the canine model is expected to lead to improved outcomes for humans, as well as pet dogs, facing bladder cancer.
Collapse
Affiliation(s)
- Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Audrey Ruple
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
- Department of Public Health, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Sarah A. Tersey
- Department of Medicine, Section of Endocrinology, Metabolism, and Diabetes, University of Chicago, Chicago, IL, United States
| | - Jennifer B. Nelson
- Department of Medicine, Section of Endocrinology, Metabolism, and Diabetes, University of Chicago, Chicago, IL, United States
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Hock Gan Heng
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Noah M. Hahn
- Department of Oncology and Urology, Johns Hopkins University School of Medicine, and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Larry G. Adams
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Christopher M. Fulkerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Patty L. Bonney
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Christine Royce
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Lindsey M. Fourez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alexander W. Enstrom
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Lisbeth A. Ambrosius
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| |
Collapse
|
17
|
Lee HW, Seo HK. Clinical implications and practical considerations for poly-ADP-ribose polymerase inhibitors as a new horizon for the management of urothelial carcinoma of the bladder. Investig Clin Urol 2022; 63:369-372. [PMID: 35796137 PMCID: PMC9262491 DOI: 10.4111/icu.20220203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hye Won Lee
- Department of Urology, Center for Urologic Cancer, National Cancer Center, Goyang, Korea
| | - Ho Kyung Seo
- Department of Urology, Center for Urologic Cancer, National Cancer Center, Goyang, Korea
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|