1
|
Srivastava P, Rai A, Kumar M. Network analysis of differentially expressed genes involved in oral submucous fibrosis and oral squamous cell carcinoma: a comparative approach. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:583-593. [PMID: 39779388 DOI: 10.1016/j.oooo.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Oral submucous fibrosis (OSMF) is categorized as an oral potentially malignant disorder (OPMD) with an increased risk of occurrence of oral squamous cell carcinoma (OSCC). In this study, we aimed to identify the hub genes associated with OSMF and OSCC. STUDY DESIGN Using RStudio, a set of differentially expressed genes (DEGs) were identified in (A) OSMF, (B) OSCC, and (C) comparative OSMF-OSCC category, obtained from Gene Expression Omnibus (GEO). The Protein to Protein Interaction (PPI) Network, hub genes, and functional annotation were determined using Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, and SR-Plot, Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS A total of 2081, 2320, and 3295 DEGs were obtained from the OSMF, OSCC, and comparative categories, respectively. Hub gene and gene enrichment analysis revealed that the genes in (A) MYH6, TTN, TNNT3, MYL1, TPM2, ACTN3, NEB, MYL2, TNNT1, and TPM1; (B) CD4, SELL, CD28, CD27, PRF1, CD80, GZMB, CD40LG, ITGAX, and IL4; and (C) CD4, CD8A, CTLA4, CD28, GZMB, IL79, CD69, CD40LG, IFNG, and CD80 categories, were associated with muscle contraction, cell proliferation, and malignant transformation. CONCLUSIONS Hub genes and functional enrichment analysis revealed the diagnostic genes and the genes responsible for the malignant transformation in OSMF, OSCC, and the comparative category. A panel of identified genes will be of clinical significance in targeted therapy in future studies. (Oral Surg Oral Med Oral Pathol Oral Radiol YEAR;VOL:page range).
Collapse
Affiliation(s)
- Prerna Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arpita Rai
- Dental Institute, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Chen S, Li Z, Hu M, Yu Y, Liu B, Saiyin W, Li J. Triptolide Treatment for Oral Squamous Cell Carcinoma by Regulating the LncRNA-MSTRG.24214.1/MiRNA-939-5p/LCN2 Axis. J Oral Pathol Med 2025; 54:312-324. [PMID: 40097309 DOI: 10.1111/jop.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Although triptolide has demonstrated efficacy in treating oral squamous cell carcinoma (OSCC), its precise molecular mechanism remains unclear. This study investigated the mechanism underlying triptolide's action in lncRNA-mediated competing endogenous RNA (ceRNA) regulation. METHODS The impact of triptolide on OSCC in vivo was validated using a xenograft tumor model. Whole-transcriptome sequencing and bioinformatics analysis were conducted to construct the lncRNA-miRNA-mRNA regulatory network. Relative gene and protein expression levels were confirmed using qRT-PCR and Western blot. Dual-luciferase assays were performed to assess target interactions, while cell proliferation was measured using CCK8 assays, and cell migration and invasion were evaluated via wound healing and transwell assays. RESULTS Triptolide markedly reduced proliferation, migration, and invasion in Cal27 and Tca8113 cells. After 22 days of triptolide treatment, the tumor volume of mice gradually shrank. This led to significant upregulation of cleaved Caspase-3 and Bax, alongside downregulation of Bcl-2. Transcriptome sequencing and bioinformatics analysis identified 266 differentially expressed mRNAs, 528 lncRNAs, and 85 miRNAs. Enhanced expression of lncRNA MSTRG.24214.1 and mRNA LCN2, along with reduced expression of miR-939-5p, was observed in the triptolide group. CONCLUSIONS The lncRNA-miRNA-mRNA ceRNA network associated with triptolide's impact on OSCC was successfully established. Triptolide suppressed OSCC development and progression both in vitro and in vivo, potentially through modulation of the MSTRG.24214.1-miR-939-5p-LCN2 axis. These findings offer a solid foundation for future personalized triptolide-based therapeutic approaches.
Collapse
Affiliation(s)
- Siyan Chen
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengmiao Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menglin Hu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wuliji Saiyin
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral Implant Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jichen Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Zhou S, Qin Y, Lei A, Li Y, Yang P, Liu H, Sun Y, Zhang J, Deng C, Chen Y. Neoadjuvant and Adjuvant Immunotherapy in the Treatment of Oral Squamous Cell Carcinoma. J Biochem Mol Toxicol 2025; 39:e70199. [PMID: 40034087 DOI: 10.1002/jbt.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is experiencing a progressive increase in global incidence. Regrettably, this entity is typically discovered at an advanced stage in the majority of patients, which indicates increased therapeutic challenges and a poorer prognosis. Programmed cell death protein 1 (PD-1) appears to have a significant role in immunotherapy and monoclonal antibodies targeting this molecule have been utilized as a therapeutic intervention. A decade of research indicates that neoadjuvant immunotherapy has garnered greater interest than adjuvant immunotherapy in OSCC. This may be due to neoadjuvant immunotherapy serving as a preventive and adjunctive treatment. Enhanced outcomes may be achieved by optimizing the cancer microenvironment before surgery. Of note, neoadjuvant immunotherapy has been introduced preoperatively for untreated OSCC.
Collapse
Affiliation(s)
- Songlin Zhou
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Yutao Qin
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Anwen Lei
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- Xuancheng City People's Hospital, Xuancheng, China
| | - Yue Li
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Peiru Yang
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Hai Liu
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Yi Sun
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Yu Chen
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
4
|
Oyovwi MO, Udi OA, Atere AD, Joseph GU, Ogbutor UG. Molecular pathways: the quest for effective MAO-B inhibitors in neurodegenerative therapy. Mol Biol Rep 2025; 52:240. [PMID: 39961877 DOI: 10.1007/s11033-025-10349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
Neurodegenerative diseases like Parkinson's and Alzheimer's are a global health challenge due to their progressive degeneration, leading to cognitive decline and motor dysfunction. Monoamine oxidase B (MAO-B) enzyme is implicated in neurodegeneration, and developing inhibitors could be a promising therapeutic strategy. This review explores MAO-B activity molecular pathways, evaluates MAO-B inhibitors in neurodegenerative therapy, identifies challenges, and suggests future research directions. This review synthesizes findings from a range of scientific literature, including experimental studies, clinical trials, and biochemical analyses that focus on the role of MAO-B in neurodegeneration. Information was gathered from databases such as PubMed, Scopus, and Web of Science, ensuring a comprehensive overview of recent advancements in MAO-B inhibition strategies. The review reveals several promising MAO-B inhibitors that have demonstrated efficacy in preclinical models, as well as some that have progressed to clinical trials. Compounds such as rasagiline and selegiline have shown neuroprotective effects and benefits in symptom management in patients with Parkinson's disease. Furthermore, the review discusses novel inhibitors that target specific molecular pathways, enhancing the potential for improved therapeutic outcomes. However, several inhibitors also present challenges regarding their selectivity, side effects, and long-term efficacy. Research on MAO-B inhibitors for neurodegenerative diseases is crucial, with ongoing studies aiming for selective, potent molecules with fewer side effects and multimodal therapies.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Yenagoa, Bayelsa State, Nigeria
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa C Zone 1, Ga-Rankuwa City, 0208, South Africa
| | - Gregory Uchechukwu Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | | |
Collapse
|
5
|
Su Y, Zhou Q, Wu Q, Ding Y, Jiang M, Zhang X, Wang J, Wang X, Ge C. Infection‑associated bile acid disturbance contributes to macrophage activation in patients with cirrhosis. Mol Med Rep 2024; 30:150. [PMID: 38963032 PMCID: PMC11234163 DOI: 10.3892/mmr.2024.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cirrhosis impairs macrophage function and disrupts bile acid homeostasis. Although bile acids affect macrophage function in patients with sepsis, whether and how the bile acid profile is changed by infection in patients with cirrhosis to modulate macrophage function remains unclear. The present study aimed to investigate the changes in the bile acid profile of patients with cirrhosis and infection and their effects on macrophage function. Serum was collected from 20 healthy subjects, 18 patients with cirrhosis and 39 patients with cirrhosis and infection. Bile acid profiles were detected using high‑performance liquid chromatography‑triple time‑of‑flight mass spectrometer. The association between bile acid changes and infection was analysed using receiver operating characteristic (ROC) curves. Infection‑altered bile acids were used in combination with lipopolysaccharides (LPS) to stimulate RAW264.7/THP‑1 cells in vitro. The migratory capacity was evaluated using wound healing and Transwell migration assays. The expression of Arg‑1, iNOS, IκBα, phosphorylated (p‑)IκBα and p65 was examined with western blotting and immunofluorescence, Tnfα, Il1b and Il6 mRNA was examined with RT‑qPCR, and CD86, CD163 and phagocytosis was measured with flow cytometry. The ROC curves showed that decreased hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA) levels were associated with infection. HDCA or DCA combined with LPS enhanced the phagocytic and migratory ability of macrophages, accompanied by upregulation of iNOS and CD86 protein expression as well as Tnfα, Il1b, and Il6 mRNA expression. However, neither HDCA nor DCA alone showed an effect on these phenotypes. In addition, DCA and HDCA acted synergistically with LPS to increase the expression of p‑IκBα and the intranuclear migration of p65. Infection changed the bile acid profile in patients with cirrhosis, among which the reduction of DCA and HDCA associated most strongly with infection. HDCA and DCA enhanced the sensitivity of macrophage function loss to LPS stimulation. These findings suggested a potential role for monitoring the bile acid profile that could help manage patients with cirrhosis and infection.
Collapse
Affiliation(s)
- Yong Su
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaoling Zhou
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiong Wu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yijie Ding
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meijie Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Xiaoyu Zhang
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jia Wang
- Department of Pharmacy, Hefei First People's Hospital, Hefei, Anhui 230032, P.R. China
| | - Xinming Wang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chaoliang Ge
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
Ries J, Trumet L, Hahn A, Kunater L, Lutz R, Geppert C, Kesting M, Weber M. The Immune Checkpoint BTLA in Oral Cancer: Expression Analysis and Its Correlation to Other Immune Modulators. Int J Mol Sci 2024; 25:6601. [PMID: 38928307 PMCID: PMC11204357 DOI: 10.3390/ijms25126601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
In oral squamous cell carcinoma (OSCC) tissues, an immunotolerant situation triggered by immune checkpoints (ICPs) can be observed. Immune checkpoint inhibitors (ICIs) against the PD1/PD-L axis are used with impressive success. However, the response rate is low and the development of acquired resistance to ICI treatment can be observed. Therefore, new treatment strategies especially involving immunological combination therapies need to be developed. The novel negative immune checkpoint BTLA has been suggested as a potential biomarker and target for antibody-based immunotherapy. Moreover, improved response rates could be displayed for tumor patients when antibodies directed against BTLA were used in combination with anti-PD1/PD-L1 therapies. The aim of the study was to check whether the immune checkpoint BTLA is overexpressed in OSCC tissues compared to healthy oral mucosa (NOM) and could be a potential diagnostic biomarker and immunological target in OSCC. In addition, correlation analyses with the expression of other checkpoints should clarify more precisely whether combination therapies are potentially useful for the treatment of OSCC. A total of 207 tissue samples divided into 2 groups were included in the study. The test group comprised 102 tissue samples of OSCC. Oral mucosal tissue from 105 healthy volunteers (NOM) served as the control group. The expression of two isoforms of BTLA (BTLA-1/2), as well as PD1, PD-L1/2 and CD96 was analyzed by RT-qPCR. Additionally, BTLA and CD96 proteins were detected by IHC. Expression levels were compared between the two groups, the relative differences were calculated, and statistical relevance was determined. Furthermore, the expression rates of the immune checkpoints were correlated to each other. BTLA expression was significantly increased in OSCC compared to NOM (pBTLA_1 = 0.003; pBTLA_2 = 0.0001, pIHC = 0.003). The expression of PD1, its ligands PD-L1 and PD-L2, as well as CD96, were also significantly increased in OSCC (p ≤ 0.001). There was a strong positive correlation between BTLA expression and that of the other checkpoints (p < 0.001; ρ ≥ 0.5). BTLA is overexpressed in OSCC and appears to be a relevant local immune checkpoint in OSCC. Thus, antibodies directed against BTLA could be potential candidates for immunotherapies, especially in combination with ICI against the PD1/PD-L axis and CD96.
Collapse
Affiliation(s)
- Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Leah Trumet
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Alina Hahn
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
| | - Lina Kunater
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| |
Collapse
|
7
|
Viet CT, Asam KR, Yu G, Dyer EC, Kochanny S, Thomas CM, Callahan NF, Morlandt AB, Cheng AC, Patel AA, Roden DF, Young S, Melville J, Shum J, Walker PC, Nguyen KK, Kidd SN, Lee SC, Folk GS, Viet DT, Grandhi A, Deisch J, Ye Y, Momen-Heravi F, Pearson AT, Aouizerat BE. Artificial intelligence-based epigenomic, transcriptomic and histologic signatures of tobacco use in oral squamous cell carcinoma. NPJ Precis Oncol 2024; 8:130. [PMID: 38851780 PMCID: PMC11162452 DOI: 10.1038/s41698-024-00605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) biomarker studies rarely employ multi-omic biomarker strategies and pertinent clinicopathologic characteristics to predict mortality. In this study we determine for the first time a combined epigenetic, gene expression, and histology signature that differentiates between patients with different tobacco use history (heavy tobacco use with ≥10 pack years vs. no tobacco use). Using The Cancer Genome Atlas (TCGA) cohort (n = 257) and an internal cohort (n = 40), we identify 3 epigenetic markers (GPR15, GNG12, GDNF) and 13 expression markers (IGHA2, SCG5, RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3, DMTN, GPD2, BAALC, and FMO3), which are dysregulated in OSCC patients who were never smokers vs. those who have a ≥ 10 pack year history. While mortality risk prediction based on smoking status and clinicopathologic covariates alone is inaccurate (c-statistic = 0.57), the combined epigenetic/expression and histologic signature has a c-statistic = 0.9409 in predicting 5-year mortality in OSCC patients.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| | - Kesava R Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Emma C Dyer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Sara Kochanny
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, College of Dentistry, Chicago, IL, USA
| | - Anthony B Morlandt
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen C Cheng
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Ashish A Patel
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Dylan F Roden
- Department of Otolaryngology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Simon Young
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - James Melville
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Jonathan Shum
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh K Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie N Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Jeremy Deisch
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
- New York University Rory Meyers College of Nursing, New York, NY, USA
| |
Collapse
|
8
|
Li K, Shi L, Liu L, Wang J, Nie M, Liu X. Verification of the expression trend and interaction prediction of innate immune cells and immune-checkpoint molecules in the process of oral mucosal carcinogenesis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:192-206. [PMID: 38597079 PMCID: PMC11034413 DOI: 10.7518/hxkq.2024.2023280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/22/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVES This study aimed to explore the expression trends of innate immune cells and immune-checkpoint molecules validated by data calculation in the process of oral mucosal carcinogenesis, as well as to explore methods of suppressing oral mucosal carcinogenesis based on immunotherapy by predicting their interactions. Me-thods 1) The cancer genome atlas (TCGA) database comprehensively scores immune cells and immune-checkpoint molecules in the process of oral mucosal carcinogenesis and screens out intrinsic immune cells and immune-checkpoint molecules that interfere with tumor immune escape. 2) Clinical patient blood routine data were collected for the statistical analysis of peripheral blood immune cells during the progression of oral mucosal carcinogenesis. Immune cells in peripheral blood that may affect the progression of oral mucosal carcinogenesis were screened. 3) Immunohistochemical staining was performed on intrinsic immune cells and immune-checkpoint molecules validated based on data calculation in various stages of oral mucosal carcinogenesis. 4) Special staining was used to identify innate immune cells in various stages of oral mucosal carcinogenesis based on data-calculation verification. 5) Survival analysis was conducted on intrinsic immune cells and immune-checkpoint molecules validated based on data calculation during the process of oral mucosal carcinogenesis. The association of intrinsic immune cells and immune-checkpoint molecules with the prognosis of oral squamous cell carcinoma was verified. RESULTS The expression of monocytes and neutrophils increased during the process of oral mucosal carcinogenesis. The expression of eosinophils showed a single peak trend of up and down. The expression of mast cells decreased. In the process of oral mucosal carcinogenesis, the expression of the immune-checkpoint molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death-ligand (PD-L1) increased. The expression trends of monocytes, neutrophils, and eosinophils were positively correlated with those of CTLA4 and PD-L1 immune-checkpoint molecules. The expression trend of mast cells was negatively correlated with the expression of CTLA4 and PD-L1. Monocytes, neutrophils, and eosinophils may promote tumor immune escape mediated by CTLA4 and/or PD-L1, thereby accelerating the progression of oral mucosal carcinogenesis. Mast cells may inhibit tumor immune escape mediated by CTLA4 and/or PD-L1, delaying the progression of oral mucosal carcinogenesis. CONCLUSIONS Therefore, interference with specific immune cells in innate immunity can regulate the expression of CTLA4 and/or PD-L1 to a certain extent, inhibit tumor immune escape, and delay the progression of oral mucosal carcinogenesis.
Collapse
Affiliation(s)
- Kaiyu Li
- Dept. of Periodontal Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral&Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
| | - Lijuan Shi
- Dept. of Periodontal Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral&Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
| | - Linxin Liu
- Dept. of Periodontal Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral&Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
| | - Jie Wang
- Dept. of Periodontal Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral&Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
| | - Minhai Nie
- Dept. of Periodontal Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral&Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
| | - Xuqian Liu
- Dept. of Periodontal Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral&Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Zhang L, Wang WQ, Chen JH, Feng J, Liao YZ, Zou Y, Liu R. Tumor-infiltrating immune cells and survival in head and neck squamous cell carcinoma: a retrospective computational study. Sci Rep 2024; 14:6390. [PMID: 38493212 PMCID: PMC10944537 DOI: 10.1038/s41598-024-56738-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
The immune infiltration profiles of the tumor microenvironment have effects on the prognosis of head and neck squamous cell carcinoma (HNSCC). Whereas, HNSCC is a heterogeneous group of tumors, but past work has not taken this into consideration. Herein, we investigate the associations between survival and the function of immune cells in different tumorigenic sites of HNSCC. 1149 samples of HNSCC were collected from publicly accessible databases. Based on gene expression data, CIBERSORTx was applied to determine the proportion of 22 immune cell subpopulations. In the Cox regression model, the associations between overall survival, disease-free survival, and immune cells were examined, modeling gene expression and immune cell proportion as quartiles. Consensus cluster analysis was utilized to uncover immune infiltration profiles. Regardless of tumor sites, CD8+ T cells and activated CD4 memory T cells were associated with favorable survival, while eosinophils were the opposite. The survival of the hypopharynx, oral cavity, and larynx subsites was somewhat affected by immune cells, while the survival of the oropharynx subsite potentially was the most impacted. High expression of TIGIT, CIITA, and CXCR6 was linked to better survival, mainly in the oropharynx subsite. Immune cell clusters with four distinct survival profiles were discovered, of which the cluster with a high CD8+ T cell content had a better prognosis. The immune-infiltration pattern is related to the survival of HNSCC to varying degrees depending on the tumor sites; forthcoming studies into immune-mediated infiltration profiles will lay the groundwork for treating HNSCC with precision therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Wei-Quan Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jun-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia Feng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ya-Zhou Liao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - You Zou
- High Performance Computing Center, Central South University, Changsha, 410008, People's Republic of China.
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
11
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
12
|
Caponio VCA, Zhurakivska K, Lo Muzio L, Troiano G, Cirillo N. The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:3779. [PMID: 37568595 PMCID: PMC10417065 DOI: 10.3390/cancers15153779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
A still unresolved issue surrounding tumor formation concerns the role that the immune system plays in preventing the formation and progression of neoplasia, including oral squamous cell carcinoma (OSCC). Antitumor immunity has historically been seen as a critical barrier for cancer cells to develop, grow and spread, and this can be modulated using immunotherapies to achieve antitumor clinical responses. However, it has recently become clear that tumor-associated immunity, particularly the inflammatory microenvironment, has the paradoxical effect of enhancing tumorigenesis and progression. In this review, we discuss the multifaceted function of infiltrating immune cells in suppressing or promoting premalignancy and cancer. In particular, we report on the evidence supporting a role for T lymphocytes, dendritic cells, macrophages, and neutrophils in the development and progression of oral potentially malignant disorders (OPMD) and OSCC. We also draw attention to the clinical relevance of immune cell phenotypes and associated molecules for use as biomarkers and to the translatability of current research findings to improve classification systems and precision medicine in patients with OSCC.
Collapse
Affiliation(s)
- Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
13
|
Yue K, Yao X. Prognostic model based on telomere-related genes predicts the risk of oral squamous cell carcinoma. BMC Oral Health 2023; 23:484. [PMID: 37452322 PMCID: PMC10347773 DOI: 10.1186/s12903-023-03157-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND This study investigated a potential prognostic model based on telomere-related genes (TRGs) for the clinical prediction of oral squamous cell carcinoma (OSCC). METHODS Gene expression data and associated clinical phenotypes were obtained from online databases. Differentially expressed (DE)-TRGs were identified between OSCC and normal samples, followed by protein-protein interaction and enrichment analyses. Subsequently, the prognostic genes explored based on the DE-TRGs and survival data were applied in the establishment of the current prognostic model, and an integrated analysis was performed between high- and low-risk groups using a prognostic model. The expression of certain prognostic genes identified in the present study was validated using qPCR analysis and/or western blot in OSCC cell lines and clinical samples. RESULTS 169 DE-TRGs were identified between the OSCC samples and controls. DE-TRGs are mainly involved in functions such as hypoxia response and pathways such as the cell cycle. Eight TRGs (CCNB1, PDK4, PLOD2, RACGAP1, MET, PLK1, KPNA2, and CCNA2) associated with OSCC survival and prognosis were used to construct a prognostic model. qPCR analysis and western blot showed that most of the eight prognostic genes were consistent with the current bioinformatics results. Analysis of the high- and low-risk groups for OSCC determined by the prognostic model showed that the current prognostic model was reliable. CONCLUSIONS A novel prognostic model for OSCC was constructed by TRGs. PLOD2 and APLK1 may participate in the progression of OSCC via responses to hypoxia and cell cycle pathways, respectively. TRGs, including KPNA2 and CCNA2, may serve as novel prognostic biomarkers for OSCC.
Collapse
Affiliation(s)
- Kun Yue
- Department of Stomatology, Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, Shandong, China
| | - Xue Yao
- Department of Stomatology, Sunshine Union Hospital, 9000 Yingqian Road, High-tech Zone, Weifang, 261000, Shandong, China.
| |
Collapse
|
14
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Trumet L, Weber M, Hahn A, Kunater L, Geppert C, Glajzer J, Struckmeier AK, Möst T, Lutz R, Kesting M, Ries J. The Immune Checkpoint Receptor CD96: A Local and Systemic Immune Modulator in Oral Cancer? Cancers (Basel) 2023; 15:cancers15072126. [PMID: 37046787 PMCID: PMC10093349 DOI: 10.3390/cancers15072126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: As immunotherapy of oral squamous cell carcinomas (OSCCs), using PD1 inhibitors, is only efficient in a small proportion of patients, additional immune checkpoints need to be identified as potential therapeutic targets. There is evidence that a blockade of CD96 might positively affect the anti-tumor immune response. The aim of this study was to analyze the gene and protein expression of CD96 in the tissue and peripheral blood of OSCC patients compared to healthy controls, while also checking for potential associations with a differential expression to the histomorphological parameters. In addition, possible correlations with the expression of PD1 and PD-L1 as well as the macrophage markers CD68 and CD163 should be tested to obtain further insights into the potential effectiveness of combined checkpoint blockage. Material and Methods: For real-time quantitative polymerase chain reaction (RT-qPCR), a total of 183 blood and tissue samples, divided into a patient and a control group, were included. Additionally, 141 tissue samples were examined by immunohistochemistry (IHC). The relative expression differences between the groups were calculated using statistical tests including the Mann–Whitney U test and AUC method. The Chi-square test was used to determine whether CD96 overexpression in individual samples is associated with malignancy. Correlation analysis was performed using the Spearman correlation test. Results: There was a significant CD96 mRNA and protein overexpression in the OSCC group compared to the controls (p = 0.001). In contrast, CD96 mRNA expression in the peripheral blood of the OSCC patients was significantly lower compared to the control group (p = 0.007). In the Chi-square test, the OSCC tissue samples showed a highly significant upregulation of CD96 mRNA expression (p < 0.001) and protein expression (p = 0.005) compared to the healthy mucosa. CD96 mRNA and protein expression correlated significantly (p = 0.005). In addition, there was a significant positive correlation of CD96 expression with PD1 (p ≤ 0.001), PD-L1 (p ≤ 0.001), and CD163 (p = 0.006) at the mRNA level. Conclusions: CD96 expression in the tumor tissue and peripheral blood of OSCC patients is differentially regulated and appears to be a relevant immune checkpoint.
Collapse
Affiliation(s)
- Leah Trumet
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Alina Hahn
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lina Kunater
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jacek Glajzer
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ann-Kristin Struckmeier
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Tobias Möst
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
16
|
Chang SR, Chou CH, Liu CJ, Lin YC, Tu HF, Chang KW, Lin SC. The Concordant Disruption of B7/CD28 Immune Regulators Predicts the Prognosis of Oral Carcinomas. Int J Mol Sci 2023; 24:ijms24065931. [PMID: 36983005 PMCID: PMC10054118 DOI: 10.3390/ijms24065931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Immune modulation is a critical factor in determining the survival of patients with malignancies, including those with oral squamous cell carcinoma (OSCC) and head and neck SCC (HNSCC). Immune escape or stimulation may be driven by the B7/CD28 family and other checkpoint molecules, forming ligand-receptor complexes with immune cells in the tumor microenvironment. Since the members of B7/CD28 can functionally compensate for or counteract each other, the concomitant disruption of multiple members of B7/CD28 in OSCC or HNSCC pathogenesis remains elusive. Transcriptome analysis was performed on 54 OSCC tumors and 28 paired normal oral tissue samples. Upregulation of CD80, CD86, PD-L1, PD-L2, CD276, VTCN1, and CTLA4 and downregulation of L-ICOS in OSCC relative to the control were noted. Concordance in the expression of CD80, CD86, PD-L1, PD-L2, and L-ICOS with CD28 members was observed across tumors. Lower ICOS expression indicated a worse prognosis in late-stage tumors. Moreover, tumors harboring higher PD-L1/ICOS, PD-L2/ICOS, or CD276/ICOS expression ratios had a worse prognosis. The survival of node-positive patients was further worsened in tumors exhibiting higher ratios between PD-L1, PD-L2, or CD276 and ICOS. Alterations in T cell, macrophage, myeloid dendritic cell, and mast cell populations in tumors relative to controls were found. Decreased memory B cells, CD8+ T cells, and Tregs, together with increased resting NK cells and M0 macrophages, occurred in tumors with a worse prognosis. This study confirmed frequent upregulation and eminent co-disruption of B7/CD28 members in OSCC tumors. The ratio between PD-L2 and ICOS is a promising survival predictor in node-positive HNSCC patients.
Collapse
Affiliation(s)
- Shi-Rou Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei 104217, Taiwan
| | - Yu-Cheng Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|