1
|
Dragan Z, Pollock CA, Huang C. Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease. Life Sci 2024; 362:123338. [PMID: 39730039 DOI: 10.1016/j.lfs.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.
Collapse
Affiliation(s)
- Zac Dragan
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
2
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Li Z, Yin X, Lyu C, Wang J, Liu K, Cui S, Ding S, Wang Y, Wang J, Guo D, Xu R. Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study. Biol Trace Elem Res 2024; 202:913-926. [PMID: 37432567 DOI: 10.1007/s12011-023-03737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023]
Abstract
Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further validated the results using the autophagy inhibitor 3-methyladenine (3‑MA). Overall, we observed that ZnO NPs can trigger autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jingyi Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Kui Liu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Siyuan Cui
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Shumin Ding
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Yingying Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
5
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Parrasia S, Rossa A, Roncaglia N, Mattarei A, Honisch C, Szabò I, Ruzza P, Biasutto L. DA7R: A 7-Letter Zip Code to Target PDAC. Pharmaceutics 2023; 15:pharmaceutics15051508. [PMID: 37242749 DOI: 10.3390/pharmaceutics15051508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Nicola Roncaglia
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Claudia Honisch
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Paolo Ruzza
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padua Unit, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
7
|
Li M, Tian P, Zhao Q, Ma X, Zhang Y. Potassium channels: Novel targets for tumor diagnosis and chemoresistance. Front Oncol 2023; 12:1074469. [PMID: 36703789 PMCID: PMC9872028 DOI: 10.3389/fonc.2022.1074469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, the role of potassium channels in tumors has been intensively studied. Potassium channel proteins are widely involved in various physiological and pathological processes of cells. The expression and dysfunction of potassium channels are closely related to tumor progression. Potassium channel blockers or activators present antitumor effects by directly inhibiting tumor growth or enhancing the potency of classical antitumor agents in combination therapy. This article reviews the mechanisms by which potassium channels contribute to tumor development in various tumors in recent years, introduces the potential of potassium channels as diagnostic targets and therapeutic means for tumors, and provides further ideas for the proper individualized treatment of tumors.
Collapse
Affiliation(s)
- Meizeng Li
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Peijie Tian
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Qing Zhao
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Xialin Ma
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Yunxiang Zhang
- Department of Pathology, Weifang People’ s Hospital, Weifang, China,*Correspondence: Yunxiang Zhang,
| |
Collapse
|
8
|
Saltarella I, Altamura C, Lamanuzzi A, Apollonio B, Vacca A, Frassanito MA, Desaphy JF. Ion Channels in Multiple Myeloma: Pathogenic Role and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137302. [PMID: 35806308 PMCID: PMC9266328 DOI: 10.3390/ijms23137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of “onco-channelopathy”. Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells’ survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Benedetta Apollonio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| |
Collapse
|