1
|
Frankenbach-Désor T, Niesner I, Ahmed P, Dürr HR, Klein A, Knösel T, Gospos J, McGovern JA, Hutmacher DW, Holzapfel BM, Mayer-Wagner S. Tissue-engineered patient-derived osteosarcoma models dissecting tumour-bone interactions. Cancer Metastasis Rev 2024; 44:8. [PMID: 39592467 PMCID: PMC11599440 DOI: 10.1007/s10555-024-10218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor, primarily affecting children and young adults. For these young patients, the current treatment options for osteosarcoma impose considerable constraints on daily life with significant morbidity and a low survival rate. Despite ongoing research efforts, the 5-year survival rate of first-diagnosed patients without metastases has not changed in the past four decades. The demand for novel treatments is currently still unmet, in particular for effective second-line therapy. Therefore, there is an urgent need for advanced preclinical models and drug-testing platforms that take into account the complex disease characteristics, the high heterogeneity of the tumour and the interactions with the bone microenvironment. In this review, we provide a comprehensive overview about state-of-the-art tissue-engineered and patient-specific models for osteosarcoma. These sophisticated platforms for advanced therapy trials aim to improve treatment outcomes for future patients by modelling the patient's disease state in a more accurate and complex way, thus improving the quality of preclinical research studies.
Collapse
Affiliation(s)
- Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Isabella Niesner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Parveen Ahmed
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Hans Roland Dürr
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacqui A McGovern
- Centre for Biomedical Technologies, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
2
|
De Luca A, Capuana E, Carbone C, Raimondi L, Carfì Pavia F, Brucato V, La Carrubba V, Giavaresi G. Three-dimensional (3D) polylactic acid gradient scaffold to study the behavior of osteosarcoma cells under dynamic conditions. J Biomed Mater Res A 2024; 112:841-851. [PMID: 38185851 DOI: 10.1002/jbm.a.37665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
This study adopts an in vitro method to recapitulate the behavior of Saos-2 cells, using a system composed of a perfusion bioreactor and poly-L-lactic acid (PLLA) scaffold fabricated using the low-cost thermally-induced phase separation (TIPS) technique. Four distinct scaffold morphologies with different pore sizes were fabricated, characterized by Scanning electron microscopy and micro-CT analysis and tested with osteosarcoma cells under static and dynamic environments to identify the best morphology for cellular growth. In order to accomplish this purpose, cell growth and matrix deposition of the Saos-2 osteosarcoma cell line were assessed using Picogreen and OsteoImage assays. The obtained data allowed us to identify the morphology that better promotes Saos-2 cellular activity in static and dynamic conditions. These findings provided valuable insights into scaffold design and fabrication strategies, emphasizing the importance of the dynamic culture to recreate an appropriate 3D osteosarcoma model. Remarkably, the gradient scaffold exhibits promise for osteosarcoma applications, offering the potential for targeted tissue engineering approaches.
Collapse
Affiliation(s)
- Angela De Luca
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Capuana
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Camilla Carbone
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Lavinia Raimondi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Valerio Brucato
- Department of Engineering, University of Palermo, Palermo, Italy
| | | | - Gianluca Giavaresi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
3
|
Ren J, Zhao C, Sun R, Sun J, Lu L, Wu J, Li S, Cui L. Augmented drug resistance of osteosarcoma cells within decalcified bone matrix scaffold: The role of glutamine metabolism. Int J Cancer 2024; 154:1626-1638. [PMID: 38196144 DOI: 10.1002/ijc.34841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Due to the lack of a precise in vitro model that can mimic the nature microenvironment in osteosarcoma, the understanding of its resistance to chemical drugs remains limited. Here, we report a novel three-dimensional model of osteosarcoma constructed by seeding tumor cells (MG-63 and MNNG/HOS Cl no. 5) within demineralized bone matrix scaffolds. Demineralized bone matrix scaffolds retain the original components of the natural bone matrix (hydroxyapatite and collagen type I), and possess good biocompatibility allowing osteosarcoma cells to proliferate and aggregate into clusters within the pores. Growing within the scaffold conferred elevated resistance to doxorubicin on MG-63 and MNNG/HOS Cl no. 5 cell lines as compared to two-dimensional cultures. Transcriptomic analysis showed an increased enrichment for drug resistance genes along with enhanced glutamine metabolism in osteosarcoma cells in demineralized bone matrix scaffolds. Inhibition of glutamine metabolism resulted in a decrease in drug resistance of osteosarcoma, which could be restored by α-ketoglutarate supplementation. Overall, our study suggests that microenvironmental cues in demineralized bone matrix scaffolds can enhance osteosarcoma drug responses and that targeting glutamine metabolism may be a strategy for treating osteosarcoma drug resistance.
Collapse
Affiliation(s)
- Jiaxin Ren
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Cheng Zhao
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Ruizhu Sun
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jian Sun
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Laiya Lu
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jun Wu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuaijun Li
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lei Cui
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Khanmohammadi M, Volpi M, Walejewska E, Olszewska A, Swieszkowski W. Printing of 3D biomimetic structures for the study of bone metastasis: A review. Acta Biomater 2024; 178:24-40. [PMID: 38458512 DOI: 10.1016/j.actbio.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Bone metastasis primarily occurs when breast, prostate, or lung cancers disseminate tumoral cells into bone tissue, leading to a range of complications in skeletal tissues and, in severe cases, paralysis resulting from spinal cord compression. Unfortunately, our understanding of pathophysiological mechanisms is incomplete and the translation of bone metastasis research into the clinic has been slow, mainly due to the lack of credible ex vivo and in vivo models to study the disease progression. Development of reliable and rational models to study how tumor cells become circulating cells and then invade and sequentially colonize the bone are in great need. Advances in tissue engineering technologies offers reliable 3D tissue alternatives which answer relevant research questions towards the understanding of cancer evolution and key functional properties of metastasis progression as well as prognosis of therapeutic approach. Here we performed an overview of cellular mechanisms involved in bone metastasis including a short summary of normal bone physiology and metastasis initiation and progression. Also, we comprehensively summarized current advances and methodologies in fabrication of reliable bone tumor models based on state-of-the-art printing technologies which recapitulate structural and biological features of native tissue. STATEMENT OF SIGNIFICANCE: This review provides a comprehensive summary of the collective findings in relation to various printed bone metastasis models utilized for investigating specific bone metastasis diseases, related characteristic functions and chemotherapeutic drug screening. These tumoral models are comprehensively evaluated and compared, in terms of their ability to recapitulate physiological metastasis microenvironment. Various biomaterials (natural and synthetic polymers and ceramic based substrates) and printing strategies and design architecture of models used for printing of 3D bone metastasis models are discussed here. This review clearly out-lines current challenges and prospects for 3D printing technologies in bone metastasis research by focusing on the required perspective models for clinical application of these technologies in chemotherapeutic drug screening.
Collapse
Affiliation(s)
- Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.
| | - Marina Volpi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Ewa Walejewska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Alicja Olszewska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.
| |
Collapse
|
5
|
罗 彩, 陈 金, 张 群, 于 学, 张 书. [A polylactic acid/hydroxyapatite/scholzite composite scaffold for promoting healing of osteoporotic bone defects in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:370-380. [PMID: 38501423 PMCID: PMC10954527 DOI: 10.12122/j.issn.1673-4254.2024.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the release kinetics of Zn2+ from nZCP-loaded polylactic acid/hydroxyapatite (PLA/HA) composite scaffold (PHZ) and determine the optimal nZCP content in the scaffold. METHODS The particle size of nZCP was measured by DLS measurement, and PXRD, FTIR, and SEM were used to characterize the scaffolds and nZCP distribution; EDS was used to analyze element composition of the scaffold. Compression strength of the scaffold was determined, and ion release profile was investigated using ICP-MS. The biocompatibility of the materials was evaluated by CCK-8 assay and dead/alive staining of rat bone marrow stem cells (BMSCs) incubated with their aqueous extracts. ALP staining, alizarin red staining, RT-qPCR, and Western blotting were used to assess the osteogenic potential of the treated cells. In a rat model of bilateral ovariectomy (OVX) with femoral condylar bone defect, PHZ-1, PHZ-2, PHZ-3 or PLA/HA scaffold was implanted into the bone defect, and bone repair was observed using a microCT scanner and histological staining at 6 and 12 weeks. RESULTS DLS, PXRD, SEM, FTIR, and EDS confirmed successful synthesis of 10-nm ZCP and efficient nZCP loading in the scaffold. PHZ-2 and PHZ-3 had significantly greater compression strength than PLA/HA. ICP-MS showed that Zn2+ release from PHZ-1, PHZ-2 and PHZ-3 were all optimal for promoting osteogenesis. In rat BMSCs, all the 4 scaffolds showed good biocompatibility, and their extracts enhanced ALP activity and extracellular matrix mineralization and promoted expressions of ALP, RUNX2, and OCN in the cells. In the rat models, nZCP in the implants improved bone graft integration at 6 weeks, and PHZ-2 and PHZ-3 more effectively induced new bone formation at 12 weeks (P < 0.05). CONCLUSION PHZ scaffold is capable of stable Zn2+ release to promote osteoporotic bone defect healing, and PHZ-2 and PHZ-3 scaffolds with nZCP mass fraction of 4.5%-7.5% have better osteogenic activity.
Collapse
Affiliation(s)
- 彩珠 罗
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 金香 陈
- 南方医科大学药学院//国家药监局药物代谢研究与评价重点实验室,广东 广州 510515School of Pharmacy, Southern Medical University// NMPA Key Laboratory of Drug Metabolism Research and Evaluation, Guangzhou 510515, China
| | - 群 张
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 学钊 于
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 书勤 张
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| |
Collapse
|
6
|
Sandhu V, Bakkalci D, Wei S, Cheema U. Enhanced Biomimetics of Three-Dimensional Osteosarcoma Models: A Scoping Review. Cancers (Basel) 2023; 16:164. [PMID: 38201591 PMCID: PMC10778420 DOI: 10.3390/cancers16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
This scoping review evaluated 3D osteosarcoma (OS) models' biomimicry, examining their ability to mimic the tumour microenvironment (TME) and their drug sensitivity. Adhering to PRISMA-ScR guidelines, the systematic search revealed 293 studies, with 70 selected for final analysis. Overall, 64% of 3D OS models were scaffold-based, compared to self-generated spheroid models. Scaffolds generated using native matrix were most common (42%) with collagen I/hydroxyapatite predominating. Both scaffold-based and scaffold-free models were used equally for drug screening. The sensitivity of cancer cells in 3D was reported to be lower than that of cells in 2D in ~90% of the drug screening studies. This correlates with the observed upregulation of drug resistance. OS cells cultured in extracellular matrix (ECM)-mimetic scaffolds and native biomaterials were more resistant than cells in 2D. Co-cultures of OS and stromal cells in 3D models enhanced osteogenic differentiation, ECM remodelling, mineralisation, and angiogenesis, suggesting that tumour-stroma crosstalk promotes disease progression. Seven studies demonstrated selective toxicity of chemotherapeutics towards OS cells while sparing stromal cells, providing useful evidence for developing biomimetic tumour-stroma models to test selective drug toxicity. In conclusion, this review highlights the need to enhance biomimicry in 3D OS models for TME recapitulation, especially in testing novel therapeutics. Future research should explore innovative 3D biomimetic models, biomaterials, and advancements in personalised medicine.
Collapse
Affiliation(s)
- Vinesh Sandhu
- Division of Medicine, UCL Medical School, University College London (UCL), 74 Huntley Street, London WC1E 6DE, UK;
| | - Deniz Bakkalci
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK;
| | - Siyi Wei
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK;
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK;
| |
Collapse
|
7
|
Anandan D, Kumar A, Jeyakkani MN, Inja DB, Jaiswal AK. Investigation of Giant Cell Tumor of Bone and Tissue Engineering Approaches for the Treatment of Giant Cell Tumor of Bone. ACS APPLIED BIO MATERIALS 2023; 6:3946-3958. [PMID: 37698377 DOI: 10.1021/acsabm.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Primary bone tumors such as Ewing sarcoma, osteosarcoma, and chondrosarcoma, secondary bone tumors developed from progressive malignancies, and metastasized bone tumors are more prevalent and studied descriptively through biology and medical research. Less than 0.2% of cancer diagnoses are caused by rare bone-originating tumors, which despite being rare are particularly difficult due to their high death rates and substantial disease burden. A giant cell tumor of bone (GCTB) is an intramurally invasive but rare and benign type of bone tumor, which seldom metastasizes. The most often prescribed medication for GCTB is Denosumab, a RANKL (receptor activator of nuclear factor κB ligand) inhibitor. Because pharmaceutical drug companies rely on two-dimensional and animal models, current approaches for investigating the diverse nature of tumors are insufficient. Cell line based medication effectiveness and toxicity studies cannot predict tumor response to antitumor medicines. It has already been investigated in detail why molecular pathways do not reproduce in vitro, a phenomenon known as flat biology. Due to physiological differences between human beings and animals, animal models do not succeed in identifying side effects of the treatment, emulating metastatic growth, and establishing the link between cancer and the immune system. This review summarizes and discusses GCTB, the disease, its cellular composition, various bone tumor models, and their properties and utilization in research. As a result, this study delves deep into in vitro testing, which is vital for scientists and physicians in various fields, including pharmacology, preclinical investigations, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Dhivyaa Anandan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400085, Maharashtra, India
| | - Manasseh N Jeyakkani
- Department of Orthopaedics, Christian Medical College and Hospital, Vellore 632004, Tamilnadu, India
| | - Dan Barnabas Inja
- Department of Orthopaedics, Christian Medical College and Hospital, Vellore 632004, Tamilnadu, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India
| |
Collapse
|
8
|
Tan L, Wang Y, Hu X, Du G, Tang X, Min L. Advances of Osteosarcoma Models for Drug Discovery and Precision Medicine. Biomolecules 2023; 13:1362. [PMID: 37759763 PMCID: PMC10527053 DOI: 10.3390/biom13091362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The management of osteosarcoma (OS) patients presents a significant clinical challenge. Despite progress in conventional and targeted therapies, the survival rate of OS patients remains limited largely due to therapy resistance and the high metastatic potential of the disease. OS models that accurately reflect the fundamental characteristics are vital to the innovation and validation of effective therapies. This review provides an insight into the advances and challenges in OS drug development, focusing on various preclinical models, including cell lines, 3D culture models, murine models, and canine models. The relevance, strengths, and limitations of each model in OS research are explored. In particular, we highlight a range of potential therapeutics identified through these models. These instances of successful drug development represent promising pathways for personalized OS treatment.
Collapse
Affiliation(s)
- Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Guifeng Du
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Fischetti T, Borciani G, Avnet S, Rubini K, Baldini N, Graziani G, Boanini E. Incorporation/Enrichment of 3D Bioprinted Constructs by Biomimetic Nanoparticles: Tuning Printability and Cell Behavior in Bone Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2040. [PMID: 37513050 PMCID: PMC10386079 DOI: 10.3390/nano13142040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Reproducing in vitro a model of the bone microenvironment is a current need. Preclinical in vitro screening, drug discovery, as well as pathophysiology studies may benefit from in vitro three-dimensional (3D) bone models, which permit high-throughput screening, low costs, and high reproducibility, overcoming the limitations of the conventional two-dimensional cell cultures. In order to obtain these models, 3D bioprinting offers new perspectives by allowing a combination of advanced techniques and inks. In this context, we propose the use of hydroxyapatite nanoparticles, assimilated to the mineral component of bone, as a route to tune the printability and the characteristics of the scaffold and to guide cell behavior. To this aim, both stoichiometric and Sr-substituted hydroxyapatite nanocrystals are used, so as to obtain different particle shapes and solubility. Our findings show that the nanoparticles have the desired shape and composition and that they can be embedded in the inks without loss of cell viability. Both Sr-containing and stoichiometric hydroxyapatite crystals permit enhancing the printing fidelity of the scaffolds in a particle-dependent fashion and control the swelling behavior and ion release of the scaffolds. Once Saos-2 cells are encapsulated in the scaffolds, high cell viability is detected until late time points, with a good cellular distribution throughout the material. We also show that even minor modifications in the hydroxyapatite particle characteristics result in a significantly different behavior of the scaffolds. This indicates that the use of calcium phosphate nanocrystals and structural ion-substitution is a promising approach to tune the behavior of 3D bioprinted constructs.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Katia Rubini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | | | - Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
10
|
Valchanov P, Dukov N, Pavlov S, Kontny A, Dikova T. 3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom. Gels 2023; 9:547. [PMID: 37504427 PMCID: PMC10379613 DOI: 10.3390/gels9070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for 3D printing that has biological and radiological properties similar to those of the natural bone and to develop protocols for their histological and radiological analysis. We synthesized a hydrogel based on alginate, methylcellulose, and laponite, then 3D printed it into a series of complex bioscaffolds. The scaffolds were scanned with CT and CBCT scanners and exported as DICOM datasets, then cut into histological slides and stained using standard histological protocols. From the DICOM datasets, the average value of the voxels in Hounsfield Units (HU) was calculated and compared with natural trabecular bone. In the histological sections, we tested the effect of standard histological stains on the hydrogel matrix in the context of future cytological and histological analysis. The results confirmed that an alginate/methylcellulose/laponite-based composite hydrogel can be used for 3D printing of complex high fidelity three-dimensional scaffolds. This opens an avenue for the development of dynamic biological physical phantoms for bone tissue engineering and the development of new CT-based imaging algorithms for the needs of radiology and radiation therapy.
Collapse
Affiliation(s)
- Petar Valchanov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nikolay Dukov
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria
| | - Stoyan Pavlov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Andreas Kontny
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Tsanka Dikova
- Department of Dental Material Science and Prosthetic Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
11
|
Contessi Negrini N, Franchi A, Danti S. Biomaterial-Assisted 3D In Vitro Tumor Models: From Organoid towards Cancer Tissue Engineering Approaches. Cancers (Basel) 2023; 15:cancers15041201. [PMID: 36831542 PMCID: PMC9953828 DOI: 10.3390/cancers15041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cancers are a leading cause of death around the world, accounting for nearly 10 million deaths yearly [...].
Collapse
Affiliation(s)
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
12
|
Li C, Sun F, Tian J, Li J, Sun H, Zhang Y, Guo S, Lin Y, Sun X, Zhao Y. Continuously released Zn 2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater 2022; 24:361-375. [PMID: 36632506 PMCID: PMC9822837 DOI: 10.1016/j.bioactmat.2022.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 01/01/2023] Open
Abstract
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Fengbo Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials, Tsinghua University, Beijing, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahao Li
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shigong Guo
- Department of Rehabilitation Medicine, Southmead Hospital, Bristol, UK
| | - Yuanhua Lin
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials, Tsinghua University, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials, Tsinghua University, Beijing, China
- Corresponding author.
| | - Yu Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Corresponding author.
| |
Collapse
|
13
|
Combined Application of Patient-Derived Cells and Biomaterials as 3D In Vitro Tumor Models. Cancers (Basel) 2022; 14:cancers14102503. [PMID: 35626107 PMCID: PMC9139582 DOI: 10.3390/cancers14102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary For years, cancer has remained the second leading cause of death in U.S. and Europe even though cancer mortality has decreased, as new advances in medical treatment have made this decrease possible. Chemotherapy has remained the gold standard and “one-size-fits-all” treatment for cancer, yet this approach has lacked precision and, at times, failed. Recent studies attempt to mimic the spatial microenvironment of cancer tissue to better study chemotherapy agents by combining patient-derived cells and three-dimensional (3D) scaffold, bioprinting, spheroid, and hydrogel culturing. This commentary aims to collect and discuss recent findings concerning the combined application of biomaterials with patient-derived cancer cells to better study and test therapies in vitro, that will further personalize and facilitate the treatment of various cancers, and also address the limitation and challenges in developing these 3D models. Abstract Although advances have been made in cancer therapy, cancer remains the second leading cause of death in the U.S. and Europe, and thus efforts to continue to study and discover better treatment methods are ongoing. Three-dimensional (3D) tumor models have shown advantages over bi-dimensional (2D) cultures in evaluating the efficacy of chemotherapy. This commentary aims to highlight the potential of combined application of biomaterials with patient-derived cancer cells as a 3D in vitro model for the study and treatment of cancer patients. Five studies were discussed which demonstrate and provided early evidence to create 3D models with accurate microenvironments that are comparable to in vivo tumors. To date, the use of patient-derived cells for a more personalized approach to healthcare in combination with biomaterials to create a 3D tumor is still relatively new and uncommon for application in clinics. Although highly promising, it is important to acknowledge the current limitations and challenges of developing these innovative in vitro models, including the need for biologists and laboratory technicians to become familiar with biomaterial scaffolds, and the effort for bioengineers to create easy-to-handle scaffolds for routine assessment.
Collapse
|