1
|
Yu XW, She PW, Chen FC, Chen YY, Zhou S, Wang XM, Lin XR, Liu QL, Huang ZJ, Qiu Y. Metabolic subtypes and immune landscapes in esophageal squamous cell carcinoma: prognostic implications and potential for personalized therapies. BMC Cancer 2024; 24:230. [PMID: 38373930 PMCID: PMC10875771 DOI: 10.1186/s12885-024-11890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND This study aimed to identify metabolic subtypes in ESCA, explore their relationship with immune landscapes, and establish a metabolic index for accurate prognosis assessment. METHODS Clinical, SNP, and RNA-seq data were collected from 80 ESCA patients from the TCGA database and RNA-seq data from the GSE19417 dataset. Metabolic genes associated with overall survival (OS) and progression-free survival (PFS) were selected, and k-means clustering was performed. Immune-related pathways, immune infiltration, and response to immunotherapy were predicted using bioinformatic algorithms. Weighted gene co-expression network analysis (WGCNA) was conducted to identify metabolic genes associated with co-expression modules. Lastly, cell culture and functional analysis were performed using patient tissue samples and ESCA cell lines to verify the identified genes and their roles. RESULTS Molecular subtypes were identified based on the expression profiles of metabolic genes, and univariate survival analysis revealed 163 metabolic genes associated with ESCA prognosis. Consensus clustering analysis classified ESCA samples into three distinct subtypes, with MC1 showing the poorest prognosis and MC3 having the best prognosis. The subtypes also exhibited significant differences in immune cell infiltration, with MC3 showing the highest scores. Additionally, the MC3 subtype demonstrated the poorest response to immunotherapy, while the MC1 subtype was the most sensitive. WGCNA analysis identified gene modules associated with the metabolic index, with SLC5A1, NT5DC4, and MTHFD2 emerging as prognostic markers. Gene and protein expression analysis validated the upregulation of MTHFD2 in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA. CONCLUSION The established metabolic index and identified metabolic genes offer potential for prognostic assessment and personalized therapeutic interventions for ESCA, underscoring the importance of targeting metabolism-immune interactions in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA.
Collapse
Affiliation(s)
- Xiao-Wan Yu
- Clinical Laboratory Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China.
| | - Pei-Wei She
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, P. R. China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, 350001, Fuzhou, Fujian, P. R. China
| | - Fang-Chuan Chen
- Stomatology Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Ya-Yu Chen
- Stomatology Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Shuang Zhou
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Xi-Min Wang
- Clinical Laboratory Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Xiao-Rong Lin
- Clinical Laboratory Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Qiao-Ling Liu
- Clinical Laboratory Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Zhi-Jun Huang
- Esophageal Surgery Department, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China
| | - Yu Qiu
- Reproductive Center, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, P. R. China.
| |
Collapse
|
2
|
Kim YH, Yoon SJ, Kim M, Kim HH, Song YS, Jung JW, Han D, Cho SW, Kwon SW, Park YJ. Integrative Multi-omics Analysis Reveals Different Metabolic Phenotypes Based on Molecular Characteristics in Thyroid Cancer. Clin Cancer Res 2024; 30:883-894. [PMID: 38088902 DOI: 10.1158/1078-0432.ccr-23-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
PURPOSE Thyroid cancer metabolic characteristics vary depending on the molecular subtype determined by mutational status. We aimed to investigate the molecular subtype-specific metabolic characteristics of thyroid cancers. EXPERIMENTAL DESIGN An integrative multi-omics analysis was conducted, incorporating transcriptomics, metabolomics, and proteomics data obtained from human tissues representing distinct molecular characteristics of thyroid cancers: BRAF-like (papillary thyroid cancer with BRAFV600E mutation; PTC-B), RAS-like (follicular thyroid cancer with RAS mutation; FTC-R), and ATC-like (anaplastic thyroid cancer with BRAFV600E or RAS mutation; ATC-B or ATC-R). To validate our findings, we employed tissue microarray of human thyroid cancer tissues and performed in vitro analyses of cancer cell phenotypes and metabolomic assays after inducing genetic knockdown. RESULTS Metabolic properties differed between differentiated thyroid cancers of PTC-B and FTC-R, but were similar in dedifferentiated thyroid cancers of ATC-B/R, regardless of their mutational status. Tricarboxylic acid (TCA) intermediates and branched-chain amino acids (BCAA) were enriched with the activation of TCA cycle only in FTC-R, whereas one-carbon metabolism and pyrimidine metabolism increased in both PTC-B and FTC-R and to a great extent in ATC-B/R. However, the protein expression levels of the BCAA transporter (SLC7A5) and a key enzyme in one-carbon metabolism (SHMT2) increased in all thyroid cancers and were particularly high in ATC-B/R. Knockdown of SLC7A5 or SHMT2 inhibited the migration and proliferation of thyroid cancer cell lines differently, depending on the mutational status. CONCLUSIONS These findings define the metabolic properties of each molecular subtype of thyroid cancers and identify metabolic vulnerabilities, providing a rationale for therapies targeting its altered metabolic pathways in advanced thyroid cancer.
Collapse
Affiliation(s)
- Yoo Hyung Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Sang Jun Yoon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, the Republic of South Korea
| | - Mina Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, the Republic of South Korea
| | - Hwan Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, the Republic of South Korea
| | - Jin Woo Jung
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, the Republic of South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Sung Won Kwon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, the Republic of South Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
- Department of Internal Medicine and Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, the Republic of South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, the Republic of South Korea
| |
Collapse
|
3
|
Moiso E, Farahani A, Marble HD, Hendricks A, Mildrum S, Levine S, Lennerz JK, Garg S. Developmental Deconvolution for Classification of Cancer Origin. Cancer Discov 2022; 12:2566-2585. [PMID: 36041084 PMCID: PMC9627133 DOI: 10.1158/2159-8290.cd-21-1443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Cancer is partly a developmental disease, with malignancies named based on cell or tissue of origin. However, a systematic atlas of tumor origins is lacking. Here we map the single-cell organogenesis of 56 developmental trajectories to the transcriptomes of over 10,000 tumors across 33 cancer types. We deconvolute tumor transcriptomes into signals for individual developmental trajectories. Using these signals as inputs, we construct a developmental multilayer perceptron (D-MLP) classifier that outputs cancer origin. D-MLP (ROC-AUC: 0.974 for top prediction) outperforms benchmark classifiers. We analyze tumors from patients with cancer of unknown primary (CUP), selecting the most difficult cases in which extensive multimodal workup yielded no definitive tumor type. Interestingly, CUPs form groups distinguished by developmental trajectories, and classification reveals diagnosis for patient tumors. Our results provide an atlas of tumor developmental origins, provide a tool for diagnostic pathology, and suggest developmental classification may be a useful approach for patient tumors. SIGNIFICANCE Here we map the developmental trajectories of tumors. We deconvolute tumor transcriptomes into signals for mammalian developmental programs and use this information to construct a deep learning classifier that outputs tumor type. We apply the classifier to CUP and reveal the developmental origins of patient tumors. See related commentary by Wang, p. 2498. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Broad Institute of Harvard-MIT, Cambridge, Massachusetts
| | - Alexander Farahani
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hetal D. Marble
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Austin Hendricks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Samuel Mildrum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Stuart Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Jochen K. Lennerz
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Salil Garg
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|