1
|
Huang P, Wen F, Wu Q, Zhang P, Li Q. The causal effect of atopic dermatitis on lung cancer: A Mendelian randomization study. Skin Res Technol 2024; 30:e13841. [PMID: 38965791 PMCID: PMC11224128 DOI: 10.1111/srt.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Growing evidence has shown that atopic dermatitis (AD) may decrease lung cancer (LC) risk. However, the causality between the two diseases is inconsistent and controversial. Therefore, we explored the causal relationship between AD and different histological subtypes of LC by using the Mendelian randomization (MR) method. MATERIALS AND METHODS We conducted the MR study based on summary statistics from the genome-wide association studies (GWAS) of AD (10,788 cases and 30,047 controls) and LC (29,266 cases and 56,450 controls). Instrumental variables (IVs) were obtained after removing SNPs associated with potential confounders. We employed inverse-variance weighted (IVW), MR-Egger, and weighted median methods to pool estimates, and performed a comprehensive sensitivity analysis. RESULTS The results of the IVW method suggested that AD may decrease the risk of developing lung adenocarcinoma (LUAD) (OR = 0.91, 95% CI: 0.85-0.97, P = 0.007). Moreover, no causality was identified between AD and overall LC (OR = 0.96, 95% CI: 0.91-1.01, P = 0.101), lung squamous cell carcinoma (LUSC) (OR = 1.04, 95% CI: 0.96-1.036, P = 0.324), and small cell lung carcinoma (SCLC) (OR = 0.95, 95% CI: 0.82-1.10, P = 0.512). A comprehensive sensitivity test showed the robustness of our results. CONCLUSION The present study indicates that AD may decrease the risk of LUAD in the European population, which needs additional investigations to identify the potential molecular mechanisms.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Wen
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Radiation OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - QiuJi Wu
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - PengFei Zhang
- Gastric Cancer CenterDivision of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Qiu Li
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Qu H, Liu X, Jiang T, Huang G, Cai H, Xing D, Mao Y, Zheng X. Integration analysis using bioinformatics and experimental validation on the clinical and biological significance of TSLP in cancers. Cell Signal 2023; 111:110874. [PMID: 37640192 DOI: 10.1016/j.cellsig.2023.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) has significantly impacted the development and progression of various neoplastic disorders. To comprehensively evaluate the diverse significance of TSLP in malignant tumors, we first integrative analyze the TSLP expression level in paired and unpaired pan-cancer tissue and cell line, compared against the normal tissue. The correlation between TSLP expression, molecular subtypes, immune subtypes, diagnostic value, and prognostic value in pan-cancer was also investigated. We then explored the impact of TSLP expression on multifaced immune cell infiltration and subsequent clinical outcomes in lung adenocarcinoma (LUAD) patients. and conducted cellular experiments to functionally examine the effect of TSLP on cell proliferation, apoptosis, cell cycle, migration, and invasion in LUAD. The anti-neoplastic mechanism of TSLP was further investigated by qRT-PCR and western blotting. Our findings reveal that TSLP expression is abnormally low in various cancers compared to normal tissue and is associated with different molecular and immune subtypes of cancers. Moreover, ROC and survival analysis results suggest that TSLP expression is correlated with the diagnostic, prognostic, clinical features, and immune cells of LUAD patients. Cell experiments showed that overexpression of TSLP elicited a significant reduction in LUAD cell viability, promoted cell apoptosis, impeded cell cycle progression in the G2/M phase, and inhibited cell migration and invasion. In addition, TSLP inhibited LUAD progression through the JAK1/STAT3 signaling pathway. Therefore, targeting TSLP shows potential as a therapeutic strategy for pan-cancer, particularly for LUAD, and as a biomarker for predicting the prognosis of this malignancy.
Collapse
Affiliation(s)
- Honglin Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Xinning Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China
| | - Ting Jiang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China
| | - Guodong Huang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Houhao Cai
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Daijun Xing
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Yuecheng Mao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China.
| |
Collapse
|
3
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Boieri M, Marchese E, Pham QM, Azin M, Steidl LE, Malishkevich A, Demehri S. Thymic stromal lymphopoietin-stimulated CD4+ T cells induce senescence in advanced breast cancer. Front Cell Dev Biol 2022; 10:1002692. [PMID: 36467403 PMCID: PMC9714463 DOI: 10.3389/fcell.2022.1002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Thymic Stromal Lymphopoietin (TSLP) plays a prominent role in inducing type 2 immune response, commonly associated with atopic diseases. TSLP-activated CD4+ T helper 2 cells block early carcinogenesis by inducing terminal differentiation in spontaneous breast and lung cancer models. However, the impact of TSLP induction on advanced cancer with altered cellular phenotypes is unclear. Using an established MMTV-PyMttg breast cancer cell line, we demonstrate that TSLP-stimulated CD4+ T cells possess an antitumor effect in advanced breast cancer. In contrast to early breast cancer suppression, the antitumor immunity mediated by TSLP-stimulated CD4+ T cells in advanced breast cancer is mediated by the induction of a senescent-like phenotype in cancer cells. Inflammatory CD4+ T cells drive breast cancer cells into senescence by releasing interferon-gamma and tumor necrosis factor-alpha, which directly bind to their receptors on cancer cells. Our findings reveal a novel mechanism of TSLP-activated CD4+ T cell immunity against advanced breast cancer, mediated by cellular senescence as a distinct effector mechanism for cancer immunotherapy.
Collapse
Affiliation(s)
- Margherita Boieri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Emanuela Marchese
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Quan Minh Pham
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Marjan Azin
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lauren E. Steidl
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna Malishkevich
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Shadmehr Demehri,
| |
Collapse
|