1
|
Naimy S, Sølberg JBK, Kuczek DE, Løvendorf MB, Bzorek M, Litman T, Mund A, Rahbek Gjerdrum LM, Clark RA, Mann M, Dyring-Andersen B. Comparative Quantitative Proteomic Analysis of Melanoma Subtypes, Nevus-Associated Melanoma, and Corresponding Nevi. J Invest Dermatol 2024; 144:1608-1621.e4. [PMID: 38185415 DOI: 10.1016/j.jid.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
A substantial part of cutaneous malignant melanomas develops from benign nevi. However, the precise molecular events driving the transformation from benign to malignant melanoma are not well-understood. We used laser microdissection and mass spectrometry to analyze the proteomes of melanoma subtypes, including superficial spreading melanomas (n = 17), nodular melanomas (n = 17), and acral melanomas (n = 15). Furthermore, we compared the proteomes of nevi cells with those of melanoma cells within the same specimens (nevus-associated melanoma (n = 14)). In total, we quantified 7935 proteins. Despite the genomic and clinical differences of the melanoma subtypes, our analysis revealed relatively similar proteomes, except for the upregulation of proteins involved in immune activation in nodular melanomas versus acral melanomas. Examining nevus-associated melanoma versus nevi, we found 1725 differentially expressed proteins (false discovery rate < 0.05). Among these proteins were 140 that overlapped with cancer hallmarks, tumor suppressors, and regulators of metabolism and cell cycle. Pathway analysis indicated aberrant activation of the phosphoinositide 3-kinase-protein kinase B-mTOR pathways and the Hippo-YAP pathway. Using a classifier, we identified six proteins capable of distinguishing melanoma from nevi samples. Our study represents a comprehensive comparative analysis of the proteome in melanoma subtypes and associated nevi, offering insights into the biological behavior of these distinct entities.
Collapse
Affiliation(s)
- Soraya Naimy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie B K Sølberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Dorota E Kuczek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Bengtson Løvendorf
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mund
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Beatrice Dyring-Andersen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
He Y, Luan X, Lin Y, Dong C, Zhang J, Zhu Y. lncRNA AGAP11 Suppresses Lung Adenocarcinoma Progression by miR-494-3p and Predicts Prognosis. J Environ Pathol Toxicol Oncol 2024; 43:1-11. [PMID: 39016137 DOI: 10.1615/jenvironpatholtoxicoloncol.2024052122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a subtype of lung cancer that occurs frequently and results in high mortality and morbidity, comprising almost 50% of all cases with the disease. Previously, long non-coding RNAs (lncRNAs) was evidenced to be helpful in the diagnosis and prognosis of LUAD. lncRNA AGAP11 was identified as a dysregulated lncRNA in LUAD. Whether AGAP11 is linked to the progression and prognosis of LUAD has not been known. The purpose was to probe the action of AGAP11 in the LUAD progression together with its intrinsic mechanism, with a view to supplying a perspective biomarker and therapeutic target for LUAD. AGAP11 expression in LUAD was analyzed by searching in the GEPIA database and conducting RT-qPCR. The significance of AGAP11 for the prognosis of LUAD was assessed by statistical analyses. The targeting relationship between AGAP11 and miR-494-3p was corroborated with Dual-luciferase reporter assay. The role of AGAP11 on cellular processes in LUAD cells was evaluated by CCK-8 and Transwell assays. AGAP11 was markedly down-regulated in LUAD and tightly correlated with TNM stage, lymph node metastasis, and tumor differentiation degree of patients. Down-regulation of AGAP11 was found to predict a dismal prognosis of LUAD. AGAP11 negatively modulated miR-494-3p expression by interacting with it. The growth, migration, and invasion of LUAD cells could be impaired by AGAP11 overexpression, which would be attenuated by the enhanced miR-494-3p expression. AGAP11 acted as a predictor for prognosis and curbed LUAD progression through modulating miR-494-3p.
Collapse
Affiliation(s)
- Ye He
- Department of Radiotherapy, The Second People's Hospital of Wuhu, Wuhu 241001, China
| | - Xinchi Luan
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ya Lin
- The First People's Hospital of Wenling
| | - Chunge Dong
- Department of Pathology, The First People's Hospital of Wenling, Wenling 317500, China
| | - Jie Zhang
- Department of Pathology, The First People's Hospital of Wenling, Wenling 317500, China
| | - Yangli Zhu
- Department of Pathology, The First People's Hospital of Wenling, Wenling 317500, China
| |
Collapse
|
3
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Zhang Q, Teow JY, Kerishnan JP, Abd Halim AA, Chen Y. Clusterin and Its Isoforms in Oral Squamous Cell Carcinoma and Their Potential as Biomarkers: A Comprehensive Review. Biomedicines 2023; 11:biomedicines11051458. [PMID: 37239129 DOI: 10.3390/biomedicines11051458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck cancer, ranked as the sixth most common cancer worldwide, accounting for approximately 300,000 new cases and 145,000 deaths annually. Early detection using biomarkers significantly increases the 5-year survival rate of OSCC by up to 80-90%. Clusterin (CLU), also known as apolipoprotein J, is a sulfated chaperonic glycoprotein expressed in all tissues and human fluids and has been reported to be a potential biomarker of OSCC. CLU has been implicated as playing a vital role in many biological processes such as apoptosis, cell cycle, etc. Abnormal CLU expression has been linked with the development and progression of cancers. Despite the fact that there are many studies that have reported the involvement of CLU and its isoforms in OSCC, the exact roles of CLU and its isoforms in OSCC carcinogenesis have not been fully explored. This article aims to provide a comprehensive review of the current understanding of CLU structure and genetics and its correlation with OSCC tumorigenesis to better understand potential diagnostic and prognostic biomarker development. The relationship between CLU and chemotherapy resistance in cancer will also be discussed to explore the therapeutic application of CLU and its isoforms in OSCC.
Collapse
Affiliation(s)
- Qinyi Zhang
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jun Yao Teow
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yeng Chen
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Investigating the Anticancer Activity of G-Rh1 Using In Silico and In Vitro Studies (A549 Lung Cancer Cells). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238311. [PMID: 36500403 PMCID: PMC9890317 DOI: 10.3390/molecules27238311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses on the two metastatic regulators, Rho-associated protein kinase 1 (ROCK1) and RhoA, along with other standard apoptosis regulators. The ROCK1 protein is a member of the active serine/threonine kinase family that is crucial for many biological processes, including cell division, differentiation, and death, as well as many cellular processes and muscle contraction. The abnormal activation of ROCK1 kinase causes several disorders, whereas numerous studies have also shown that RhoA is expressed highly in various cancers, including colon, lung, ovarian, gastric, and liver malignancies. Hence, inhibiting both ROCK1 and RhoA will be promising in preventing metastasis. Therefore, the molecular level interaction of G-Rh1 with the ROCK1 and RhoA active site residues from the preliminary screening clearly shows its inhibitory potential. Molecular dynamics simulation and principal component analysis give essential insights for comprehending the conformational changes that result from G-Rh1 binding to ROCK1 and RhoA. Further, MTT assay was employed to examine the potential cytotoxicity in vitro against human lung cancer cells (A549) and Raw 264.7 Murine macrophage cells. Thus, G-Rh1 showed significant cytotoxicity against human lung adenocarcinoma (A549) at 100 µg/mL. In addition, we observed an elevated level of reactive oxygen species (ROS) generation, perhaps promoting cancer cell toxicity. Additionally, G-Rh1 suppressed the mRNA expression of RhoA, ROCK1, MMP1, and MMP9 in cancer cell. Accordingly, G-Rh1 upregulated the p53, Bax, Caspase 3, caspase 9 while Bcl2 is downregulated intrinsic pathway. The findings from our study propose that the anticancer activity of G-Rh1 may be related to the induction of apoptosis by the RhoA/ROCK1 signaling pathway. As a result, this study evaluated the functional drug-like compound G-Rh1 from Panax ginseng in preventing and treating lung cancer adenocarcinoma via regulating metastasis and apoptosis.
Collapse
|