1
|
Wu Y, Zhang J, Tian Y, Chi Shing Cho W, Xu HX, Lin ZX, Xian YF. 20(S)-Ginsenoside Rh2 overcomes gemcitabine resistance in pancreatic cancer by inhibiting LAMC2-Modulated ABC transporters. J Adv Res 2024:S2090-1232(24)00390-4. [PMID: 39270979 DOI: 10.1016/j.jare.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
INTRODUCTION Gemcitabine (GEM) is the first-line drug for pancreatic ductal adenocarcinoma (PDAC), but drug resistance severely restricts its chemotherapeutic efficacy. Laminin subunit γ2 (LAMC2) plays a crucial role in extracellular matrix formation in the development of GEM-resistance. However, the biological function of LAMC2 in GEM resistance and its molecular mechanisms are still unclear. 20(S)-Ginsenoside Rh2 (Rh2), one of the principal active components isolated from Ginseng Radix et Rhizoma, possesses strong anti-tumor effects. However, the effects of Rh2 on overcoming GEM resistance and its action mechanisms remain to be elucidated. OBJECTIVES This study aimed to determine the efficacy of Rh2 on overcoming GEM resistance and to explore its underlying molecular mechanisms. METHODS Clinical study, Western blotting, publicly available databasesand bioinformatic analyses were performed to investigate the protein expression of LAMC2 in the GEM-resistant PDAC patients and the acquired GEM-resistant PDAC cells. Then, the effects of Rh2 on overcoming the GEM resistance in PDAC were evaluated both in vitro and in vivo. Stable silencing or overexpression of LAMC2 in the GEM-resistant PDAC cells were established for validating the role of LAMC2 on Rh2 overcoming the GEM resistance in PDAC. RESULTS The protein expression of LAMC2 was markedly increased in the GEM-resistant PDAC patient biopsies compared to the sensitive cases. The protein expression of LAMC2 was significantly higher in the acquired GEM-resistant PDAC cells than that in their parental cells. Rh2 enhanced the chemosensitivity of GEM in the GEM-resistant PDAC cells, and inhibited the tumor growth of Miapaca-2-GR cell-bearing mice and Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mice. Rh2 effectively reversed the GEM resistance in Miapaca-2-GR and Capan-2-GR cells by inhibiting LAMC2 expression through regulating the ubiquitin-proteasome pathway. Knockdown of LAMC2 enhanced the chemosensitivity of GEM and the effects of Rh2 on overcoming the GEM resistance in PDAC cells and the orthotopic PDAC mouse model. Conversely, LAMC2 overexpression aggravated the chemoresistance of GEM and abolished the effects of Rh2 on overcoming GEM resistance via modulating ATP-binding cassette (ABC) transporters leading to the active GEM efflux. CONCLUSIONS LAMC2 plays an important role in the GEM resistance in PDAC, and Rh2 is a potential adjuvant for overcoming the chemoresistance of GEM in PDAC.
Collapse
Affiliation(s)
- Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China; Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Chinese Medicine Specialty Clinic cum Clinical Teaching and Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; The Chinese University of Hong Kong Chinese Medicine Specialty Clinic cum Clinical Teaching and Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Zajkowska M, Mroczko B. The Role of Pentraxin 3 in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:5832. [PMID: 38136377 PMCID: PMC10741769 DOI: 10.3390/cancers15245832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal cancers have become a huge problem worldwide as the number of new cases continues to increase. Due to the growing need to explore new biomarkers and therapeutic targets for the detection and treatment of cancerous lesions, we sought to elucidate the role of Pentraxin-3 in the progression of cancerous lesions, as it is involved in the process of angiogenesis and inflammation. Statistically significant changes in the concentration of this parameter have emerged in many gastrointestinal cancer patients. Moreover, it is related to the advancement of cancer, as well as processes leading to the development of those changes. In the case of studies concerning tissue material, both increased and decreased tissue expression of the tested parameter were observed and were dependent on the type of cancer. In the case of cell lines, both human and animal, a significant increase in Pentraxin 3 gene expression was observed, which confirmed the changes observed at the protein level. In conclusion, it can be assumed that PTX3, both at the level of gene expression and protein concentrations, is highly useful in the detection of gastrointestinal cancers, and its use as a biomarker and/or therapeutic target may be useful in the future.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Li D, Hao Z, Nan Y, Chen Y. Role of long pentraxin PTX3 in cancer. Clin Exp Med 2023; 23:4401-4411. [PMID: 37438568 DOI: 10.1007/s10238-023-01137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Cancer has become a leading cause of death and disease burden worldwide, closely related to rapid socioeconomic development. However, the fundamental reason is the lack of comprehensive understanding of the mechanism of cancer, accurate identification of preclinical cancer, and effective treatment of the disease. Therefore, it is particularly urgent to study specific mechanisms of cancer and develop effective prediction and treatment methods. Long Pentraxin PTX3 is a soluble pattern recognition molecule produced by various cells in inflammatory sites, which plays a role as a promoter or suppressor of cancer in multiple tumors through participating in innate immune response, neovascularization, energy metabolism, invasion, and metastasis mechanisms. Based on this, this article mainly reviews the role of PTX3 in various cancers.
Collapse
Affiliation(s)
- Duo Li
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Zhaozhao Hao
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Yandong Nan
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China.
| | - Yanwei Chen
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| |
Collapse
|
4
|
Pastorino L, Ghiorzo P, Bruno W. Pancreatic Cancer: From Genetic Mechanisms to Translational Challenges. Cancers (Basel) 2023; 15:4056. [PMID: 37627084 PMCID: PMC10452557 DOI: 10.3390/cancers15164056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive malignancies in industrialized countries, is predicted to become the second leading cause of cancer deaths by 2040 [...].
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi X, 16132 Genoa, Italy (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, V.le Benedetto XV, 6, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi X, 16132 Genoa, Italy (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, V.le Benedetto XV, 6, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi X, 16132 Genoa, Italy (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, V.le Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
5
|
Li Z, Jin L, Xia L, Li X, Guan Y, He H. Body mass index, C-reactive protein, and pancreatic cancer: A Mendelian randomization analysis to investigate causal pathways. Front Oncol 2023; 13:1042567. [PMID: 36816931 PMCID: PMC9932924 DOI: 10.3389/fonc.2023.1042567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Aim To explore whether C-reactive protein (CRP) mediates the risk of body mass index (BMI) in pancreatic cancer (PC) and calculate the mediate proportion of CRP in this possible mechanism. Methods Based on two-sample Mendelian randomization (TSMR), a two-step Mendelian randomization (TM) model was conducted to determine whether CRP was a mediator of the causal relationship between BMI and PC. The multivariable Mendelian randomization (MVMR) study was designed for mediating analysis and to calculate the mediating proportion mediated by CRP. Results BMI has a positive causal relationship with PC (n = 393 SNPs, OR = 1.484, 95% CI: 1.021-2.157, p< 0.05). BMI has a positive causal relationship with CRP (n = 179 SNPs, OR = 1.393, 95% CI: 1.320-1.469, p< 0.05). CRP has a positive causal relationship with PC (n = 54 SNPs, OR = 1.348, 95% CI: 1.004-1.809, p< 0.05). After adjusting CRP, BMI has no causal relationship with PC (n = 334 SNPs, OR = 1.341, 95% CI: 0.884-2.037, p< 0.05). After adjusting BMI, there was still a positive causal relationship between CRP and PC (n = 334 SNPs, OR = 1.441, 95% CI: 1.064-1.950, p< 0.05). The mediating effect of CRP was 29%. Conclusions In clinical practice, while actively advocating for weight loss among obese patients, we should focus on chronic inflammation levels in obese patients as well. In addition, anti-inflammatory dietary patterns and appropriate physical activity are important in preventing PC.
Collapse
Affiliation(s)
- Zhenqi Li
- School of Clinical Medicine, Dali University, Dali, China
| | - Liquan Jin
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, China
- *Correspondence: Liquan Jin,
| | - Lu Xia
- School of Clinical Medicine, Dali University, Dali, China
| | - Xiangzhi Li
- College of Life Science, Shaanxi Normal University, Xi’an, China
| | - Yunfei Guan
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Hongyang He
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
6
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|