1
|
Yamano A, Inoue T, Shiba S, Shimo T, Yamanaka M, Shirata R, Matsumoto K, Yagihashi T, Tokuuye K, Chang W. Dosimetric Evaluation of Beam-specific PTV and Worst-case Optimization Methods for Liver Proton Therapy. In Vivo 2024; 38:3059-3067. [PMID: 39477417 PMCID: PMC11535939 DOI: 10.21873/invivo.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM In spot-scanning proton therapy, intra-fractional anatomical changes by organ movement can lead to deterioration in dose distribution due to beam range variation. To explore a more robust treatment planning method, this study evaluated the dosimetric characteristics and robustness of two proton therapy planning methods for liver cancer. PATIENTS AND METHODS Two- or three-field treatment plans were created for 11 patients with hepatocellular carcinoma or metastatic liver cancer using a single-field uniform dose (SFUD) technique. The plans were optimized using either beam-specific planning target volume (BSPTV) or worst-case optimization (WCO). The target coverage for the gross tumor volume (GTV), planning target volume (PTV), and organs at risk (OAR) parameters related to toxicity were calculated from the perturbed dose distributions, considering setup and range uncertainties. Statistical analyses of the BSPTV and WCO plans were performed using the Wilcoxon signed-rank sum test (p<0.05). The calculation times for a single optimization process were also recorded and compared. RESULTS The robustness of the WCO plans in the worst-case scenario was significantly higher than that of the BSPTV plan in terms of GTV target coverage, prevention of maximum dose increase to the gastrointestinal tract, and the dose received by normal liver regions. However, there were no significant differences in PTV, and the calculation time required to create the WCO plan was considerably longer. CONCLUSION In SFUD proton therapy for liver cancer, the WCO plans required a longer optimization time but exhibited superior robustness in GTV coverage and sparing of OARs.
Collapse
Affiliation(s)
- Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan;
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takahiro Shimo
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Ryosuke Shirata
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Kazuki Matsumoto
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Koichi Tokuuye
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Weishan Chang
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
2
|
Kusuhara T, Gon H, Terashima K, Komatsu S, Matsuo Y, Tokumaru S, Toyama H, Kido M, Okimoto T, Fukumoto T. Comparison of Prognostic Outcomes Between Repeat Liver Resection and Particle Therapy for Patients with Recurrent Hepatocellular Carcinoma. Ann Surg Oncol 2024:10.1245/s10434-024-16363-w. [PMID: 39453585 DOI: 10.1245/s10434-024-16363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Particle therapy (PT) as an initial hepatocellular carcinoma (HCC) treatment has been reported to be effective; however, its efficacy for the treatment of recurrent HCC remains unclear. OBJECTIVE This study aimed to evaluate the efficacy of PT compared with repeat liver resection for treating recurrent HCC after initial LR, with a focus on prognostic outcomes. METHODS Between 2005 and 2019, 89 and 49 patients underwent repeat LR and PT for recurrent HCC after initial LR, respectively. The 5-year overall survival (OS) and recurrence-free survival (RFS) were evaluated using propensity score matching. Treatment-related complications were scored using the National Institute Common Terminology Criteria for Adverse Events (CTCAE) and were compared between the repeat LR and PT groups. RESULTS In the entire cohort, the 5-year OS was significantly better in the repeat LR group than in the PT group (75% vs. 48%; p = 0.0003), and the 5-year RFS was comparable in both groups (22% vs. 13%; p = 0.088). Propensity score matching created 34 pairs of patients; no significant differences in the 5-year OS (65% vs. 48%; p = 0.310) and RFS (21% vs. 8%; p = 0.271) were observed between the repeat LR and PT groups. The proportion of CTCAE grade ≥3 complications was 8.8% and 5.9% in the repeat LR and PT groups, respectively (p = 0.641). CONCLUSIONS After initial LR, the prognosis and treatment-related complications in patients with recurrent HCC were comparable between the repeat LR and PT groups in the matched cohort; therefore, PT may remain one of the multidisciplinary treatment options for recurrent HCC.
Collapse
Affiliation(s)
- Tatsuki Kusuhara
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hidetoshi Gon
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiro Matsuo
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Kido
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
Zhang W, Cai X, Sun J, Wang W, Zhao J, Zhang Q, Jiang G, Wang Z. Pencil Beam Scanning Carbon Ion Radiotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2397-2409. [PMID: 38169909 PMCID: PMC10759913 DOI: 10.2147/jhc.s429186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Carbon ion radiotherapy (CIRT) has emerged as a promising treatment modality for hepatocellular carcinoma (HCC). However, evidence of using the pencil beam scanning (PBS) technique to treat moving liver tumors remains lacking. The present study investigated the efficacy and toxicity of PBS CIRT in patients with HCC. Methods Between January 2016 and October 2021, 90 consecutive HCC patients treated with definitive CIRT in our center were retrospectively analyzed. Fifty-eight patients received relative biological effectiveness-weighted doses of 50-70 Gy in 10 fractions, and 32 received 60-67.5 Gy in 15 fractions, which were determined by the tumor location and normal tissue constraints. Active motion-management techniques and necessary strategies were adopted to mitigate interplay effects efficiently. Oncologic outcomes and toxicities were evaluated. Results The median follow-up time was 28.6 months (range 5.7-74.6 months). The objective response rate was 75.0% for all 90 patients with 100 treated lesions. The overall survival rates at 1-, 2- and 3-years were 97.8%, 83.3% and 75.4%, respectively. The local control rates at 1-, 2- and 3-years were 96.4%, 96.4% and 93.1%, respectively. Radiation-induced liver disease was not documented, and 4 patients (4.4%) had their Child-Pugh score elevated by 1 point after CIRT. No grade 3 or higher acute non-hematological toxicities were observed. Six patients (6.7%) experienced grade 3 or higher late toxicities. Conclusion The active scanning technique was clinically feasible to treat HCC by applying necessary mitigation measures for interplay effects. The desirable oncologic outcomes as well as favorable toxicity profiles presented in this study will be a valuable reference for other carbon-ion centers using the PBS technique and local effect model-based system, and add to a growing body of evidence about the role of CIRT in the management of HCC.
Collapse
Affiliation(s)
- Wenna Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
| | - Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
| | - Jiayao Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
| | - Jingfang Zhao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Nouso K. Recent Advancements for the Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4444. [PMID: 37760414 PMCID: PMC10526772 DOI: 10.3390/cancers15184444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and is currently one of the most common cancers [...].
Collapse
Affiliation(s)
- Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, 3-20-1, Kitanagase-omotemachi, Kita-ku, Okayama 700-8557, Japan
| |
Collapse
|
5
|
Hajj C, Crane CH. HCC: We Prefer Fractionation Versus Dose Reduction. Int J Radiat Oncol Biol Phys 2023; 115:277. [PMID: 36621228 DOI: 10.1016/j.ijrobp.2022.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Zhou J, Kang M, Wang Y, Higgins KA, Simone CB, Patel P, McDonald MW, Lin L, Bohannon D. Proton liver stereotactic body radiation therapy: Treatment techniques and dosimetry feasibility from a single institution. JOURNAL OF RADIOSURGERY AND SBRT 2023; 9:33-42. [PMID: 38029011 PMCID: PMC10681147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023]
Abstract
Purpose To assess the resulting dosimetry characteristics of simulation and planning techniques for proton stereotactic body radiation therapy (SBRT) of primary and secondary liver tumors. Methods Consecutive patients treated under volumetric daily image guidance with liver proton SBRT between September 2019 and March 2022 at Emory Proton Therapy Center were included in this study. Prescriptions ranged from 40 Gy to 60 Gy in 3- or 5-fraction regimens, and motion management techniques were used when target motion exceeded 5 mm. 4D robust optimization was used when necessary. Dosimetry evaluation was conducted for ITV V100, D99, Dmax, and liver-ITV mean dose and D700cc. Statistical analysis was performed using independent-samples Mann-Whitney U tests. Results Thirty-six tumors from 29 patients were treated. Proton therapy for primary and secondary liver tumors using motion management techniques and robust optimization resulted in high target coverage and low doses to critical organs. The median ITV V100% was 100.0%, and the median ITV D99% was 111.3%. The median liver-ITV mean dose and D700cc were 499 cGy and 5.7 cGy, respectively. The median conformity index (CI) was 1.03, and the median R50 was 2.56. Except for ITV D99% (primary 118.1% vs. secondary 107.2%, p = 0.005), there were no significant differences in age, ITV volume, ITV V100%, ITV maximum dose, liver-ITV mean dose, or D700cc between primary and secondary tumor groups. Conclusion The study demonstrated that proton therapy with motion management techniques and robust optimization achieves excellent target coverage with low normal liver doses for primary and secondary liver tumors. The results showed high target coverage, high conformality, and low doses to the liver.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | | | - Yinan Wang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | | | | | - Pretesh Patel
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Mark W. McDonald
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Duncan Bohannon
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Nankali S, Worm ES, Thomsen JB, Stick LB, Bertholet J, Høyer M, Weber B, Mortensen HR, Poulsen PR. Intrafraction tumor motion monitoring and dose reconstruction for liver pencil beam scanning proton therapy. Front Oncol 2023; 13:1112481. [PMID: 36937392 PMCID: PMC10019817 DOI: 10.3389/fonc.2023.1112481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pencil beam scanning (PBS) proton therapy can provide highly conformal target dose distributions and healthy tissue sparing. However, proton therapy of hepatocellular carcinoma (HCC) is prone to dosimetrical uncertainties induced by respiratory motion. This study aims to develop intra-treatment tumor motion monitoring during respiratory gated proton therapy and combine it with motion-including dose reconstruction to estimate the delivered tumor doses for individual HCC treatment fractions. Methods Three HCC-patients were planned to receive 58 GyRBE (n=2) or 67.5 GyRBE (n=1) of exhale respiratory gated PBS proton therapy in 15 fractions. The treatment planning was based on the exhale phase of a 4-dimensional CT scan. Daily setup was based on cone-beam CT (CBCT) imaging of three implanted fiducial markers. An external marker block (RPM) on the patient's abdomen was used for exhale gating in free breathing. This study was based on 5 fractions (patient 1), 1 fraction (patient 2) and 6 fractions (patient 3) where a post-treatment control CBCT was available. After treatment, segmented 2D marker positions in the post-treatment CBCT projections provided the estimated 3D motion trajectory during the CBCT by a probability-based method. An external-internal correlation model (ECM) that estimated the tumor motion from the RPM motion was built from the synchronized RPM signal and marker motion in the CBCT. The ECM was then used to estimate intra-treatment tumor motion. Finally, the motion-including CTV dose was estimated using a dose reconstruction method that emulates tumor motion in beam's eye view as lateral spot shifts and in-depth motion as changes in the proton beam energy. The CTV homogeneity index (HI) The CTV homogeneity index (HI) was calculated as D 2 % - D 98 % D 50 % × 100 % . Results The tumor position during spot delivery had a root-mean-square error of 1.3 mm in left-right, 2.8 mm in cranio-caudal and 1.7 mm in anterior-posterior directions compared to the planned position. On average, the CTV HI was larger than planned by 3.7%-points (range: 1.0-6.6%-points) for individual fractions and by 0.7%-points (range: 0.3-1.1%-points) for the average dose of 5 or 6 fractions. Conclusions A method to estimate internal tumor motion and reconstruct the motion-including fraction dose for PBS proton therapy of HCC was developed and demonstrated successfully clinically.
Collapse
Affiliation(s)
- Saber Nankali
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Saber Nankali,
| | | | - Jakob Borup Thomsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|