1
|
Turk A, Metin TO, Kuloglu T, Yilmaz M, Artas G, Ozercan IH, Hancer S. Isthmin-1 and spexin as promising novel biomarker candidates for invasive ductal breast carcinoma. Tissue Cell 2024; 91:102601. [PMID: 39520846 DOI: 10.1016/j.tice.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Breast cancer is one of the most common malignant tumors and a leading cause of cancer-related death in women. Research is focusing on biomarkers linked to breast cancer, particularly two novel proteins: isthmin-1 (ISM-1) and spexin (SPX), which require further investigation. MATERIAL AND METHODS The study involved 20 healthy controls and 60 patients with invasive ductal carcinoma, categorized into three groups: Grade I (n=20), Grade II (n=20), and Grade III (n=20). Levels of ISM-1 and SPX in tissue were analyzed using immunohistochemistry alongside the clinicopathologic data of patients. RESULTS There were no statistically significant differences in age, menopausal status, ER, PR, and Cerb-B2 values across grades (p>0.05). Tumor diameters showed a significant increase in Grade I compared to Grade II (p<0.05), while no significant difference was noted between Grade II and Grade III, although diameters were larger in Grade III compared to Grade I (p<0.05). Notably, ISM-1 immunoreactivity decreased, and SPX immunoreactivity increased significantly across all grades compared to normal tissue (p<0.05), with no significant differences between tumor grades for these markers (p>0.05). CONCLUSIONS This study presents new findings on ISM-1 and SPX expression in invasive ductal breast carcinoma. The decrease in ISM-1 and increase in SPX suggest a need for further research into the relationship between adipokines and tumor development in breast cancer.
Collapse
Affiliation(s)
- Ahmet Turk
- Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| | - Tuba Ozcan Metin
- Department of Histology and Embryology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazıg, Turkey
| | - Mustafa Yilmaz
- Department of Emergency Medicine, Firat University School of Medicine, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, Firat University, School of Medicine, Elazig, Turkey
| | - I Hanifi Ozercan
- Department of Pathology, Firat University, School of Medicine, Elazig, Turkey
| | - Serhat Hancer
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazıg, Turkey
| |
Collapse
|
2
|
Nicolò E, Gianni C, Pontolillo L, Serafini MS, Munoz-Arcos LS, Andreopoulou E, Curigliano G, Reduzzi C, Cristofanilli M. Circulating tumor cells et al.: towards a comprehensive liquid biopsy approach in breast cancer. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:10. [PMID: 38751670 PMCID: PMC11093063 DOI: 10.21037/tbcr-23-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Liquid biopsy has emerged as a crucial tool in managing breast cancer (BC) patients, offering a minimally invasive approach to detect circulating tumor biomarkers. Until recently, the majority of the studies in BC focused on evaluating a single liquid biopsy analyte, primarily circulating tumor DNA and circulating tumor cells (CTCs). Despite the proven prognostic and predictive value of CTCs, their low abundance when detected using enrichment methods, especially in the early stages, poses a significant challenge. It is becoming evident that combining diverse circulating biomarkers, each representing different facets of tumor biology, has the potential to enhance the management of patients with BC. This article emphasizes the importance of considering these biomarkers as complementary/synergistic rather than competitive, recognizing their ability to contribute to a comprehensive disease profile. The review provides an overview of the clinical significance of simultaneously analyzing CTCs and other biomarkers, including cell-free circulating DNA, extracellular vesicles, non-canonical CTCs, cell-free RNAs, and non-malignant cells. Such a comprehensive liquid biopsy approach holds promise not only in BC but also in other cancer types, offering opportunities for early detection, prognostication, and therapy monitoring. However, addressing associated challenges, such as refining detection methods and establishing standardized protocols, is crucial for realizing the full potential of liquid biopsy in transforming our understanding and approach to BC. As the field evolves, collaborative efforts will be instrumental in unlocking the revolutionary impact of liquid biopsy in BC research and management.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Caterina Gianni
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Letizia Pontolillo
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Medical Oncology Department, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mara Serena Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Laura Sofia Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Curigliano
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Hachana MR, Maatouk M, Lassouad Z, Sriha B, Mokni M. microRNAs expression profile in phyllodes tumors of the breast. Heliyon 2024; 10:e24803. [PMID: 38312609 PMCID: PMC10835222 DOI: 10.1016/j.heliyon.2024.e24803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Proliferation of both stromal and epithelial components is a characteristic of fibroepithelial cancers of the breast. Certain fibroepithelial tumors of the breast, such as fibradenomas and phyllodes tumors, are challenging to distinguish and categorize. To find biomarkers for early diagnosis and improved disease management, it is crucial to deepen our understanding of the molecular pathogenesis pathways and tumor biology of PTs. It has been demonstrated that microRNAs (miRNAs) have significant roles in cancers; the expression pattern of miRNAs can help with cancer categorization and treatment. In contrast, little is understood about miRNAs in breast fibroepithelial cancers. This study was conducted retrospectively with the goal of assessing the expression of six mature miRNAs (hsa-miR-21, hsa-miR-155, hsa-miR-182, hsa-miR-34a, hsa-miR-148a, and hsa-miR-205) in breast fibroepithelial cancers using real-time PCR and predicting these miRNAs' targets using computational techniques. This study comprised 64 patients in total-55 with phyllodes tumors and 9 with fibroadenoma. The research was carried out at the Farhat Hached University Hospital's pathology department in Tunisia. These particular miRNAs expression levels were evaluated via qRT-PCR, and in silico techniques were utilized to predict potential miRNA targets. Analysis of miRNA expression in fibroadenoma and phyllodes tumor tissues revealed that miR-21, miR-155 and miR-182 were upregulated in PTs compared to fibroadenoma and normal tissues. We reported that miR-34a, miR-148a and miR-205 were downregulated in both borderline and malignant PTs compared to fibroadenoma and normal tissue. In silico miRNA target prediction suggested the involvement of these molecules in a wide context of cell signaling pathways.
Collapse
Affiliation(s)
- Mohamed Ridha Hachana
- Department of Biology, Higher School of Health of Monastir, University of Monastir, Tunisia
- Department of Pathology, CHU Farhat Hached of Sousse, Tunisia
| | - Mouna Maatouk
- Unit of Natural Bioactive Substances and Biotechnology UR12ES12, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Zayneb Lassouad
- Department of Pathology, CHU Farhat Hached of Sousse, Tunisia
| | | | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached of Sousse, Tunisia
| |
Collapse
|
4
|
Shen C, Chen Z, Jiang J, Zhang Y, Chen X, Xu W, Peng R, Zuo W, Jiang Q, Fan Y, Fang X, Zheng B. Identification and validation of fatty acid metabolism-related lncRNA signatures as a novel prognostic model for clear cell renal cell carcinoma. Sci Rep 2023; 13:7043. [PMID: 37120692 PMCID: PMC10148808 DOI: 10.1038/s41598-023-34027-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a main subtype of renal cancer, and advanced ccRCC frequently has poor prognosis. Many studies have found that lipid metabolism influences tumor development and treatment. This study was to examine the prognostic and functional significance of genes associated with lipid metabolism in individuals with ccRCC. Using the database TCGA, differentially expressed genes (DEGs) associated with fatty acid metabolism (FAM) were identified. Prognostic risk score models for genes related to FAM were created using univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Our findings demonstrate that the prognosis of patients with ccRCC correlate highly with the profiles of FAM-related lncRNAs (AC009166.1, LINC00605, LINC01615, HOXA-AS2, AC103706.1, AC009686.2, AL590094.1, AC093278.2). The prognostic signature can serve as an independent predictive predictor for patients with ccRCC. The predictive signature's diagnostic effectiveness was superior to individual clinicopathological factors. Between the low- and high-risk groups, immunity research revealed a startling difference in terms of cells, function, and checkpoint scores. Chemotherapeutic medications such lapatinib, AZD8055, and WIKI4 had better outcomes for patients in the high-risk group. Overall, the predictive signature can help with clinical selection of immunotherapeutic regimens and chemotherapeutic drugs, improving prognosis prediction for ccRCC patients.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhan Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Jiang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xinfeng Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wei Xu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Peng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Zuo
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qian Jiang
- Department of Paediatric, Chinese Medicine Hospital of Rudong, Nantong, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Xingxing Fang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Maroni P, Gomarasca M, Lombardi G. Long non-coding RNAs in bone metastasis: progresses and perspectives as potential diagnostic and prognostic biomarkers. Front Endocrinol (Lausanne) 2023; 14:1156494. [PMID: 37143733 PMCID: PMC10153099 DOI: 10.3389/fendo.2023.1156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In a precision medicine perspective, among the biomarkers potentially useful for early diagnosis of cancers, as well as to define their prognosis and eventually to identify novel and more effective therapeutic targets, there are the long non-coding RNAs (lncRNAs). The term lncRNA identifies a class of non-coding RNA molecules involved in the regulation of gene expression that intervene at the transcriptional, post-transcriptional, and epigenetic level. Metastasis is a natural evolution of some malignant tumours, frequently encountered in patients with advanced cancers. Onset and development of metastasis represents a detrimental event that worsen the patient's prognosis by profoundly influencing the quality of life and is responsible for the ominous progression of the disease. Due to the peculiar environment and the biomechanical properties, bone is a preferential site for the secondary growth of breast, prostate and lung cancers. Unfortunately, only palliative and pain therapies are currently available for patients with bone metastases, while no effective and definitive treatments are available. The understanding of pathophysiological basis of bone metastasis formation and progression, as well as the improvement in the clinical management of the patient, are central but challenging topics in basic research and clinical practice. The identification of new molecular species that may have a role as early hallmarks of the metastatic process could open the door to the definition of new, and more effective, therapeutic and diagnostic approaches. Non-coding RNAs species and, particularly, lncRNAs are promising compounds in this setting, and their study may bring to the identification of relevant processes. In this review, we highlight the role of lncRNAs as emerging molecules in mediating the formation and development of bone metastases, as possible biomarkers for cancer diagnosis and prognosis, and as therapeutic targets to counteract cancer spread.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- *Correspondence: Marta Gomarasca,
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
6
|
Rezaee M, Mohammadi F, Keshavarzmotamed A, Yahyazadeh S, Vakili O, Milasi YE, Veisi V, Dehmordi RM, Asadi S, Ghorbanhosseini SS, Rostami M, Alimohammadi M, Azadi A, Moussavi N, Asemi Z, Aminianfar A, Mirzaei H, Mafi A. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Front Pharmacol 2023; 14:1152672. [PMID: 37153758 PMCID: PMC10154547 DOI: 10.3389/fphar.2023.1152672] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.
Collapse
Affiliation(s)
- Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Veisi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Nushin Moussavi
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| |
Collapse
|
7
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Identification of fatty acid metabolism-related lncRNAs in the prognosis and immune microenvironment of colon adenocarcinoma. Biol Direct 2022; 17:19. [PMID: 35902970 PMCID: PMC9331591 DOI: 10.1186/s13062-022-00332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer metabolism is largely altered compared to normal cells. This study aims to explore critical metabolism pathways in colon adenocarcinoma (COAD), and reveal the possible mechanism of their role in cancer progression. METHODS Expression data and sequencing data of COAD samples were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The expression profiles between tumor and normal samples were compared to identify differential metabolism pathways through single sample gene set enrichment analysis. RESULTS Fatty acid synthesis was identified as a key metabolism pathway in COAD. Based on fatty acid-related lncRNAs, two molecular subtypes (C1 and C2) were defined. C2 subtype with worse prognosis had higher immune infiltration and higher expression of immune checkpoints. Five transcription factors (TFs) including FOS, JUN, HIF1A, STAT3 and STAT2 were highly expressed in C2 subtype. Five fatty acid-related lncRNAs were identified to be biomarkers for predicting COAD prognosis. Finally, further experients showed that knockdown of lncRNA PAXIP1-AS1 decreased the triglyceride content and the fatty acid synthase and acetyl-CoA carboxylase 1 expressions, which suggested that lncRNA PAXIP1-AS1 plays an important role in fatty acid metabolism of COAD. CONCLUSIONS This study demonstrated that fatty acid synthesis was greatly altered in COAD. Fatty acid-related lncRNAs were speculated to be involved in cancer progression through associating with TFs. The five screened TFs may serve as new drug targets for treating COAD.
Collapse
|