1
|
Ponton-Almodovar A, Sanderson S, Rattan R, Bernard JJ, Horibata S. Ovarian tumor microenvironment contributes to tumor progression and chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:53. [PMID: 39802952 PMCID: PMC11724355 DOI: 10.20517/cdr.2024.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME). Extracellular signaling from cells within the microenvironment heavily influences progression and drug resistance in ovarian cancer. This is frequently done through metabolic reprogramming, the process where cancer cells switch between biochemical pathways to increase their chances of survival and proliferation. Here, we focus on how crosstalk between components of the TME and the tumor promotes resistance to platinum-based chemotherapy. We highlight the role of cancer-associated fibroblasts, immune cells, adipocytes, and endothelial cells in ovarian tumor progression, invasion, metastasis, and chemoresistance. We also highlight recent advancements in targeting components of the TME as a novel therapeutic avenue to combat chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Adriana Ponton-Almodovar
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Authors contributed equally
| | - Samuel Sanderson
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Authors contributed equally
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Kou Z, Liu C, Zhang W, Sun C, Liu L, Zhang Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 2024; 64:54. [PMID: 38577950 PMCID: PMC11015919 DOI: 10.3892/ijo.2024.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
Collapse
Affiliation(s)
- Zixing Kou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, P.R. China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100007, P.R. China
| |
Collapse
|
3
|
Mukherjee S, Sakpal A, Mehrotra M, Phadte P, Rekhi B, Ray P. Correction: Mukherjee et al. Homo and Heterotypic Cellular Cross-Talk in Epithelial Ovarian Cancer Impart Pro-Tumorigenic Properties through Differential Activation of the Notch3 Pathway. Cancers 2022, 14, 3365. Cancers (Basel) 2024; 16:685. [PMID: 38398234 PMCID: PMC10887060 DOI: 10.3390/cancers16040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 02/25/2024] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Souvik Mukherjee
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Asmita Sakpal
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
| | - Megha Mehrotra
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Pratham Phadte
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Bharat Rekhi
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai 400012, India
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| |
Collapse
|