1
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2024; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
2
|
Li H, Liu C, Wang J, Xu F, Yang Y, Liang X. Advance of Circulating Tumor Cells in the Prognosis and Management of Endometrial Cancer. Cancer Invest 2024; 42:845-857. [PMID: 39533202 DOI: 10.1080/07357907.2024.2422607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/29/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Endometrial cancer (EC) is a common gynecological malignancy and its mortality has been increasing in the last twenty years. A growing body of evidence suggests that circulating tumor cells (CTCs) may provide a more complete tumor profile, facilitate the understanding of the molecular mechanism and individual management of EC patients. In this review, we presented the presence and clinical applications of CTCs and disseminated tumor cells (DTCs) in EC, particularly for EC prognosis and management, also highlighted the diagnostic value of tumor cells in urine of EC patients, aim to help researchers better focus on their study in this field.
Collapse
Affiliation(s)
- Hongli Li
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Feixue Xu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Orrapin S, Thongkumkoon P, Udomruk S, Moonmuang S, Sutthitthasakul S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Deciphering the Biology of Circulating Tumor Cells through Single-Cell RNA Sequencing: Implications for Precision Medicine in Cancer. Int J Mol Sci 2023; 24:12337. [PMID: 37569711 PMCID: PMC10418766 DOI: 10.3390/ijms241512337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Circulating tumor cells (CTCs) hold unique biological characteristics that directly involve them in hematogenous dissemination. Studying CTCs systematically is technically challenging due to their extreme rarity and heterogeneity and the lack of specific markers to specify metastasis-initiating CTCs. With cutting-edge technology, single-cell RNA sequencing (scRNA-seq) provides insights into the biology of metastatic processes driven by CTCs. Transcriptomics analysis of single CTCs can decipher tumor heterogeneity and phenotypic plasticity for exploring promising novel therapeutic targets. The integrated approach provides a perspective on the mechanisms underlying tumor development and interrogates CTCs interactions with other blood cell types, particularly those of the immune system. This review aims to comprehensively describe the current study on CTC transcriptomic analysis through scRNA-seq technology. We emphasize the workflow for scRNA-seq analysis of CTCs, including enrichment, single cell isolation, and bioinformatic tools applied for this purpose. Furthermore, we elucidated the translational knowledge from the transcriptomic profile of individual CTCs and the biology of cancer metastasis for developing effective therapeutics through targeting key pathways in CTCs.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Songphon Sutthitthasakul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Zhang X, Barnett E, Smith J, Wilkinson E, Subramaniam RM, Zarrabi A, Rodger EJ, Chatterjee A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:41-66. [PMID: 38359970 DOI: 10.1016/bs.ircmb.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Te Whatu Ora/Health New Zealand, Wellington, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia; Department of Radiology, Duke University, Durham, NC, United States
| | - Amir Zarrabi
- Te Whatu Ora/Health New Zealand, Wellington, New Zealand; Precision Urology, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, School of Health Sciences and Technology, UPES University, Dehradun, India.
| |
Collapse
|
5
|
Tretyakova MS, Menyailo ME, Schegoleva AA, Bokova UA, Larionova IV, Denisov EV. Technologies for Viable Circulating Tumor Cell Isolation. Int J Mol Sci 2022; 23:ijms232415979. [PMID: 36555625 PMCID: PMC9788311 DOI: 10.3390/ijms232415979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The spread of tumor cells throughout the body by traveling through the bloodstream is a critical step in metastasis, which continues to be the main cause of cancer-related death. The detection and analysis of circulating tumor cells (CTCs) is important for understanding the biology of metastasis and the development of antimetastatic therapy. However, the isolation of CTCs is challenging due to their high heterogeneity and low representation in the bloodstream. Different isolation methods have been suggested, but most of them lead to CTC damage. However, viable CTCs are an effective source for developing preclinical models to perform drug screening and model the metastatic cascade. In this review, we summarize the available literature on methods for isolating viable CTCs based on different properties of cells. Particular attention is paid to the importance of in vitro and in vivo models obtained from CTCs. Finally, we emphasize the current limitations in CTC isolation and suggest potential solutions to overcome them.
Collapse
Affiliation(s)
- Maria S. Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Maxim E. Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasia A. Schegoleva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ustinia A. Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Irina V. Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Evgeny V. Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-3822-282676 (ext. 3375)
| |
Collapse
|