1
|
Sun J, Song S. Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2024; 28:44. [PMID: 39781566 PMCID: PMC11709447 DOI: 10.1007/s10404-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries. Modern engineering technologies such as microfluidics and fabrication techniques have advanced the development of BBB models to simulate the basic functions of BBB. However, the intrinsic BBB properties are difficult to replicate. Existing in vitro BBB models demonstrate inconsistent BBB permeability and selectivity due to variations in microfluidic design, cell types and arrangement, expression of tight junction (TJ) proteins, and use of shear stress. Specifically, microfluidic designs have flow channels of different sizes, complexity, topology, and modular structure. Different cell types are selected to mimic various physiological conditions. These factors make it challenging to compare results obtained using different experimental setups. This paper highlights key factors that play important roles in influencing microfluidic models and discusses how these factors contribute to permeability and selectivity of the BBB models.
Collapse
Affiliation(s)
- Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, and BIO5 Institute, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| |
Collapse
|
2
|
Bonnet V, Maikranz E, Madec M, Vertti-Quintero N, Cuche C, Mastrogiovanni M, Alcover A, Di Bartolo V, Baroud CN. Cancer-on-a-chip model shows that the adenomatous polyposis coli mutation impairs T cell engagement and killing of cancer spheroids. Proc Natl Acad Sci U S A 2024; 121:e2316500121. [PMID: 38442157 PMCID: PMC10945811 DOI: 10.1073/pnas.2316500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Evaluating the ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells is crucial, for instance, to predict the efficiency of cell therapy in personalized medicine. However, the destruction of a tumor by CTLs involves CTL migration in the extra-tumoral environment, accumulation on the tumor, antigen recognition, and cooperation in killing the cancer cells. Therefore, identifying the limiting steps in this complex process requires spatio-temporal measurements of different cellular events over long periods. Here, we use a cancer-on-a-chip platform to evaluate the impact of adenomatous polyposis coli (APC) mutation on CTL migration and cytotoxicity against 3D tumor spheroids. The APC mutated CTLs are found to have a reduced ability to destroy tumor spheroids compared with control cells, even though APC mutants migrate in the extra-tumoral space and accumulate on the spheroids as efficiently as control cells. Once in contact with the tumor however, mutated CTLs display reduced engagement with the cancer cells, as measured by a metric that distinguishes different modes of CTL migration. Realigning the CTL trajectories around localized killing cascades reveals that all CTLs transition to high engagement in the 2 h preceding the cascades, which confirms that the low engagement is the cause of reduced cytotoxicity. Beyond the study of APC mutations, this platform offers a robust way to compare cytotoxic cell efficiency of even closely related cell types, by relying on a multiscale cytometry approach to disentangle complex interactions and to identify the steps that limit the tumor destruction.
Collapse
Affiliation(s)
- Valentin Bonnet
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| | - Erik Maikranz
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| | - Marianne Madec
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva 4CH-1211, Switzerland
| | - Nadia Vertti-Quintero
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
| | - Céline Cuche
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Marta Mastrogiovanni
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, New York, NY10461
| | - Andrés Alcover
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Vincenzo Di Bartolo
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Charles N. Baroud
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| |
Collapse
|
3
|
Ko J, Song J, Lee Y, Choi N, Kim HN. Understanding organotropism in cancer metastasis using microphysiological systems. LAB ON A CHIP 2024; 24:1542-1556. [PMID: 38192269 DOI: 10.1039/d3lc00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Cancer metastasis, the leading cause of cancer-related deaths, remains a complex challenge in medical science. Stephen Paget's "seed and soil theory" introduced the concept of organotropism, suggesting that metastatic success depends on specific organ microenvironments. Understanding organotropism not only offers potential for curbing metastasis but also novel treatment strategies. Microphysiological systems (MPS), especially organ-on-a-chip models, have emerged as transformative tools in this quest. These systems, blending microfluidics, biology, and engineering, grant precise control over cell interactions within organ-specific microenvironments. MPS enable real-time monitoring, morphological analysis, and protein quantification, enhancing our comprehension of cancer dynamics, including tumor migration, vascularization, and pre-metastatic niches. In this review, we explore innovative applications of MPS in investigating cancer metastasis, particularly focusing on organotropism. This interdisciplinary approach converges the field of science, engineering, and medicine, thereby illuminating a path toward groundbreaking discoveries in cancer research.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Yedam Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Natesh NR, Mogha P, Chen A, Antonia SJ, Varghese S. Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation. APL Bioeng 2024; 8:016120. [PMID: 38524671 PMCID: PMC10959556 DOI: 10.1063/5.0188238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Perfusable microvascular networks offer promising three-dimensional in vitro models to study normal and compromised vascular tissues as well as phenomena such as cancer cell metastasis. Engineering of these microvascular networks generally involves the use of endothelial cells stabilized by fibroblasts to generate robust and stable vasculature. However, fibroblasts are highly heterogenous and may contribute variably to the microvascular structure. Here, we study the effect of normal and cancer-associated lung fibroblasts on the formation and function of perfusable microvascular networks. We examine the influence of cancer-associated fibroblasts on microvascular networks when cultured in direct (juxtacrine) and indirect (paracrine) contacts with endothelial cells, discovering a generative inhibition of microvasculature in juxtacrine co-cultures and a functional inhibition in paracrine co-cultures. Furthermore, we probed the secreted factors differential between cancer-associated fibroblasts and normal human lung fibroblasts, identifying several cytokines putatively influencing the resulting microvasculature morphology and functionality. These findings suggest the potential contribution of cancer-associated fibroblasts in aberrant microvasculature associated with tumors and the plausible application of such in vitro platforms in identifying new therapeutic targets and/or agents that can prevent formation of aberrant vascular structures.
Collapse
Affiliation(s)
- Naveen R. Natesh
- Department of Biomedical Engineering, Duke University, 203 Research Drive, MSRB1 Room No. 381, Durham, North Carolina 27710, USA
| | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Durham, North Carolina 27710, USA
| | - Alan Chen
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | - Scott J. Antonia
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
5
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
6
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
7
|
Gerton TJ, Green A, Campisi M, Chen M, Gjeci I, Mahadevan N, Lee CAA, Mishra R, Vo HV, Haratani K, Li ZH, Hasselblatt KT, Testino B, Connor T, Lian CG, Elias KM, Lizotte P, Ivanova EV, Barbie DA, Dinulescu DM. Development of a Patient-Derived 3D Immuno-Oncology Platform to Potentiate Immunotherapy Responses in Ascites-Derived Circulating Tumor Cells. Cancers (Basel) 2023; 15:4128. [PMID: 37627156 PMCID: PMC10452550 DOI: 10.3390/cancers15164128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is responsible for the majority of gynecology cancer-related deaths. Patients in remission often relapse with more aggressive forms of disease within 2 years post-treatment. Alternative immuno-oncology (IO) strategies, such as immune checkpoint blockade (ICB) targeting the PD-(L)1 signaling axis, have proven inefficient so far. Our aim is to utilize epigenetic modulators to maximize the benefit of personalized IO combinations in ex vivo 3D patient-derived platforms and in vivo syngeneic models. Using patient-derived tumor ascites, we optimized an ex vivo 3D screening platform (PDOTS), which employs autologous immune cells and circulating ascites-derived tumor cells, to rapidly test personalized IO combinations. Most importantly, patient responses to platinum chemotherapy and poly-ADP ribose polymerase inhibitors in 3D platforms recapitulate clinical responses. Furthermore, similar to clinical trial results, responses to ICB in PDOTS tend to be low and positively correlated with the frequency of CD3+ immune cells and EPCAM+/PD-L1+ tumor cells. Thus, the greatest response observed with anti-PD-1/anti-PD-L1 immunotherapy alone is seen in patient-derived HGSOC ascites, which present with high levels of systemic CD3+ and PD-L1+ expression in immune and tumor cells, respectively. In addition, priming with epigenetic adjuvants greatly potentiates ICB in ex vivo 3D testing platforms and in vivo tumor models. We further find that epigenetic priming induces increased tumor secretion of several key cytokines known to augment T and NK cell activation and cytotoxicity, including IL-6, IP-10 (CXCL10), KC (CXCL1), and RANTES (CCL5). Moreover, epigenetic priming alone and in combination with ICB immunotherapy in patient-derived PDOTS induces rapid upregulation of CD69, a reliable early activation of immune markers in both CD4+ and CD8+ T cells. Consequently, this functional precision medicine approach could rapidly identify personalized therapeutic combinations able to potentiate ICB, which is a great advantage, especially given the current clinical difficulty of testing a high number of potential combinations in patients.
Collapse
Affiliation(s)
- Thomas J. Gerton
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Green
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Iliana Gjeci
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Navin Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine A. A. Lee
- Division of Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjan Mishra
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ha V. Vo
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ze-Hua Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kathleen T. Hasselblatt
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bryanna Testino
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Connor
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christine G. Lian
- Division of Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M. Elias
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Elena V. Ivanova
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniela M. Dinulescu
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Soto Veliz D, Lin K, Sahlgren C. Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature. SMART MEDICINE 2023; 2:e20220030. [PMID: 37089706 PMCID: PMC7614466 DOI: 10.1002/smmd.20220030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 04/25/2023]
Abstract
Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Kai‐Lan Lin
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Cecilia Sahlgren
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|