1
|
Aljabali AAA, Tambuwala MM, El-Tanani M, Hassan SS, Lundstrom K, Mishra V, Mishra Y, Hromić-Jahjefendić A, Redwan EM, Uversky VN. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets. Cell Signal 2024; 124:111434. [PMID: 39326690 DOI: 10.1016/j.cellsig.2024.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | | | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Jha J, Singh MK, Singh L, Pushker N, Kakkar A, Meel R, Lomi N, Bakhshi S, Chandra Nag T, Panwar C, Sen S, Kashyap S. Deciphering the intricate relationship between macrophages, pigmentation, and prognosis in uveal melanoma. J Transl Med 2024:102167. [PMID: 39491651 DOI: 10.1016/j.labinv.2024.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
High pigmentation and the abundance of M2 macrophages have been identified as negative predictors in uveal melanoma (UM). Risk factors associated with UM that are prevalent in high-risk white populations are still present, though less common, in relatively low-risk Asian population. Research shows that proangiogenic M2 macrophages and monosomy 3 play a significant role in UM progression. Our aim is to investigate the impact of tumor-associated macrophages in UM and examine their correlation with monosomy 3 & pigmentation. TEM was used to analyze the morphology of macrophages in UM. Forty UM samples underwent FISH for monosomy 3 identification. Immunohistochemistry was done to assess M2/M1 macrophages on 82 UM tissue samples. IL-10 and IL-12 expression was quantified in UM serum samples by ELISA. Expression of all markers was correlated with pigmentation markers (TYRP1, TYRP2, SILV & MITF). Prognostic outcomes were determined using the Cox proportional hazard model & log-rank test. Increased expression of M2/M1 macrophages was observed in 31 UM cases, which correlated with high expression of pigmentation markers. IL-10 concentration was high in UM cases. Monosomy 3 was evident in 50% of UM cases and significantly associated with increased immunoexpression of M2/M1 macrophages and pigmentation markers. Reduced MFS was observed in UM patients with high M2/M1 macrophage expression (p=0.001). High pigmentation and increased M2 macrophage density could impact the tumor microenvironment in UM. This could contribute to ineffective antitumor immune responses in UM patients. Our findings suggest avenues for developing novel therapeutic approaches to counteract these immunosuppressive effects in UM.
Collapse
Affiliation(s)
- Jayanti Jha
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | | | - Lata Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Delhi, India
| | - Neelam Pushker
- Department of Ophthalmology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, Delhi, India
| | - Rachna Meel
- Department of Ophthalmology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Neiwete Lomi
- Department of Ophthalmology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, Delhi, India
| | - Chanda Panwar
- Department of Anatomy, All India Institute of Medical Sciences, Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India.
| |
Collapse
|
3
|
Chen X, Zhang Z, Qin Z, Zhu X, Wang K, Kang L, Li C, Wang H. Identification and validation of a novel signature based on macrophage marker genes for predicting prognosis and drug response in kidney renal clear cell carcinoma by integrated analysis of single cell and bulk RNA sequencing. Aging (Albany NY) 2024; 16:5676-5702. [PMID: 38517387 PMCID: PMC11006469 DOI: 10.18632/aging.205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Macrophages are found in a variety of tumors and play a critical role in shaping the tumor microenvironment, affecting tumor progression, metastasis, and drug resistance. However, the clinical relevance of marker genes associated with macrophage in kidney renal clear cell carcinoma (KIRC) has yet to be documented. In this study, we initiated a thorough examination of single-cell RNA sequencing (scRNA-seq) data for KIRC retrieved from the Gene Expression Omnibus (GEO) database and determined 244 macrophage marker genes (MMGs). Univariate analysis, LASSO regression, and multivariate regression analysis were performed to develop a five-gene prognostic signature in The Cancer Genome Atlas (TCGA) database, which could divide KIRC patients into low-risk (L-R) and high-risk (H-R) groups. Then, a nomogram was constructed to predict the survival rate of KIRC patients at 1, 3, and 5 years, which was well assessed by receiver operating characteristic curve (ROC), calibration curve, and decision curve analyses (DCA). Functional enrichment analysis showed that immune-related pathways (such as immunoglobulin complex, immunoglobulin receptor binding, and cytokine-cytokine receptor interaction) were mainly enriched in the H-R group. Additionally, in comparison to the L-R cohort, patients belonging to the H-R cohort exhibited increased immune cell infiltration, elevated expression of immune checkpoint genes (ICGs), and a higher tumor immune dysfunction and exclusion (TIDE) score. This means that patients in the H-R group may be less sensitive to immunotherapy than those in the L-R group. Finally, IFI30 was validated to increase the ability of KIRC cells to proliferate, invade and migrate in vitro. In summary, our team has for the first time developed and validated a predictive model based on macrophage marker genes to accurately predict overall survival (OS), immune characteristics, and treatment benefit in KIRC patients.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheyu Zhang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Qin
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiao Zhu
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kaibin Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lijuan Kang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changying Li
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Wijdeven RH, Luk SJ, Schoufour TAW, van der Zanden SY, Cabezuelo M, Heemskerk MHM, Neefjes J. Balanced Epigenetic Regulation of MHC Class I Expression in Tumor Cells by the Histone Ubiquitin Modifiers BAP1 and PCGF1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:446-454. [PMID: 38088808 DOI: 10.4049/jimmunol.2300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
MHC class I (MHC-I) molecules are critical for CD8+ T cell responses to viral infections and malignant cells, and tumors can downregulate MHC-I expression to promote immune evasion. In this study, using a genome-wide CRISPR screen on a human melanoma cell line, we identified the polycomb repressive complex 1 (PRC1) subunit PCGF1 and the deubiquitinating enzyme BAP1 as opposite regulators of MHC-I transcription. PCGF1 facilitates deposition of ubiquitin at H2AK119 at the MHC-I promoters to silence MHC-I, whereas BAP1 removes this modification to restore MHC-I expression. PCGF1 is widely expressed in tumors and its depletion increased MHC-I expression in multiple tumor lines, including MHC-Ilow tumors. In cells characterized by poor MHC-I expression, PRC1 and PRC2 act in parallel to impinge low transcription. However, PCGF1 depletion was sufficient to increase MHC-I expression and restore T cell-mediated killing of the tumor cells. Taken together, our data provide an additional layer of regulation of MHC-I expression in tumors: epigenetic silencing by PRC1 subunit PCGF1.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sietse J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta Cabezuelo
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Lamas NJ, Lassalle S, Martel A, Nahon-Estève S, Macocco A, Zahaf K, Lalvee S, Fayada J, Lespinet-Fabre V, Bordone O, Pedeutour F, Baillif S, Hofman P. Characterisation of the protein expression of the emerging immunotherapy targets VISTA, LAG-3 and PRAME in primary uveal melanoma: insights from a southern French patient cohort. Pathology 2023; 55:929-944. [PMID: 37863710 DOI: 10.1016/j.pathol.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 10/22/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumour in adults, with dismal prognosis once metastases develop, since therapeutic options for the metastatic disease are ineffective. Over the past decade, novel cancer therapies based on immunotherapy have changed the landscape of treatment of different forms of cancer leading to many hopes of improvement in patient overall survival (OS). VISTA, LAG-3 and PRAME are novel promising targets of immunotherapy that have recently gained attention in different solid tumours, but whose relevance in UM remained to be comprehensively evaluated until now. Here, we studied the protein expression of VISTA, LAG-3 and PRAME using immunohistochemistry in representative whole tissue sections from primary UM cases in a cohort of 30 patients from a single centre (Nice University Hospital, Nice, France). The expression of each of these markers was correlated with different clinical and pathological parameters, including onset of metastases and OS. We demonstrated the protein expression of VISTA and LAG-3 in small lymphocytes infiltrating the tumour, while no expression of the proteins was detected in UM cells. For PRAME, nuclear expression was observed in UM cells, but no expression in tumour infiltrating immune cells was identified. Increased levels of VISTA expression in tumour infiltrating lymphocytes (TILs) were associated with nuclear BAP1 expression and better prognosis. Higher levels of LAG-3 in TILs were associated with higher levels of CD8-positive TILs. PRAME nuclear positivity in melanoma cells was associated with epithelioid cell dominant (>90%) UM histological subtype, higher mitotic numbers and a higher percentage of chromosome 8q gain. This study proposes VISTA as a novel relevant immune checkpoint molecule in primary UM and contributes to confirm LAG-3 and PRAME as potentially important immunotherapy targets in the treatment of UM patients, helping to expand the number of immunotherapy candidate molecules that are relevant to modulate in this aggressive cancer.
Collapse
Affiliation(s)
- Nuno Jorge Lamas
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Largo Professor Abel Salazar, Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Sandra Lassalle
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Arnaud Martel
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Sacha Nahon-Estève
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Adam Macocco
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Katia Zahaf
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Salome Lalvee
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Julien Fayada
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Virginie Lespinet-Fabre
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Olivier Bordone
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Florence Pedeutour
- Laboratory of Solid Tumour Genetics, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Stéphanie Baillif
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France.
| |
Collapse
|
6
|
Djulbegovic M, Taylor Gonzalez DJ, Antonietti M, Uversky VN, Shields CL, Karp CL. Intrinsic disorder may drive the interaction of PROS1 and MERTK in uveal melanoma. Int J Biol Macromol 2023; 250:126027. [PMID: 37506796 PMCID: PMC11182630 DOI: 10.1016/j.ijbiomac.2023.126027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Class 2 uveal melanomas are associated with the inactivation of the BRCA1 ((breast cancer type 1 susceptibility protein)-associated protein 1 (BAP1)) gene. Inactivation of BAP1 promotes the upregulation of vitamin K-dependent protein S (PROS1), which interacts with the tyrosine-protein kinase Mer (MERTK) receptor on M2 macrophages to induce an immunosuppressive environment. METHODS We simulated the interaction of PROS1 with MERTK with ColabFold. We evaluated PROS1 and MERTK for the presence of intrinsically disordered protein regions (IDPRs) and disorder-to-order (DOT) regions to understand their protein-protein interaction (PPI). We first evaluated the structure of each protein with AlphaFold. We then analyzed specific sequence-based features of the PROS1 and MERTK with a suite of bioinformatics tools. RESULTS With high-resolution, moderate confidence, we successfully modeled the interaction between PROS1 and MERTK (predicted local distance difference test score (pDLLT) = 70.68). Our structural analysis qualitatively demonstrated IDPRs (i.e., spaghetti-like entities) in PROS1 and MERK. PROS1 was 23.37 % disordered, and MERTK was 23.09 % disordered, classifying them as moderately disordered and flexible proteins. PROS1 was significantly enriched in cysteine, the most order-promoting residue (p-value <0.05). Our IUPred analysis demonstrated that there are two disorder-to-order transition (DOT) regions in PROS1. MERTK was significantly enriched in proline, the most disorder-promoting residue (p-value <0.05), but did not contain DOT regions. Our STRING analysis demonstrated that the PPI network between PROS1 and MERTK is more complex than their assumed one-to-one binding (p-value <2.0 × 10-6). CONCLUSION Our findings present a novel prediction for the interaction between PROS1 and MERTK. Our findings show that PROS1 and MERTK contain elements of intrinsic disorder. PROS1 has two DOT regions that are attractive immunotherapy targets. We recommend that IDPRs and DOT regions found in PROS1 and MERTK should be considered when developing immunotherapies targeting this PPI.
Collapse
Affiliation(s)
- Mak Djulbegovic
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Zhang C, Wu S. BAP1 mutations inhibit the NF-κB signaling pathway to induce an immunosuppressive microenvironment in uveal melanoma. Mol Med 2023; 29:126. [PMID: 37710185 PMCID: PMC10503157 DOI: 10.1186/s10020-023-00713-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Tumor immune microenvironment regulates the growth and metastasis of uveal melanoma (UM). This study aims to reveal the possible molecular mechanism of BRCA1-associated protein 1 (BAP1) mutations in affecting the tumor immune microenvironment in UM through mediating the nuclear factor-κB (NF-κB) signaling pathway. METHODS TCGA and cBioPortal databases jointly analyzed the genes with high mutation frequency in UM samples. Following survival analysis of UM patients, UM samples with BAP1 mutations were subjected to immune cell infiltration analysis. The signaling pathways associated with the mutated genes were screened by GSEA. Subsequently, the differential BAP1 expression was analyzed in the selected UM cell lines with wild type (WT) or mutant type (MUT) BAP1. RESULTS Bioinformatics analysis identified 12 genes mutated in the UM samples, while only BAP1 mutations were related to the prognosis of UM patients. UM patients with BAP1 mutations had higher immune cell infiltration. BAP1 mutations inhibited the NF-κB signaling pathway, suppressing the cytokine secretion and antigen presentation by macrophages. Rescue experiments confirmed that overexpressed NF-κB could reverse the effect of BAP1 mutations on the immunosuppressive microenvironment, thus suppressing the malignant phenotypes of UM cells. CONCLUSION BAP1 mutations may inhibit the NF-κB signaling pathway, repressing the cytokine secretion and antigen presentation by macrophages, which induces the immunosuppressive microenvironment, enhances the malignant phenotypes of UM cells and ultimately promotes the growth and metastasis of UM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Strabismus and Pediatric Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, P. R. China.
| |
Collapse
|
8
|
Antonietti M, Gonzalez DJT, Djulbegovic M, Dayhoff GW, Uversky VN, Shields CL, Karp CL. Intrinsic disorder in PRAME and its role in uveal melanoma. Cell Commun Signal 2023; 21:222. [PMID: 37626310 PMCID: PMC10463658 DOI: 10.1186/s12964-023-01197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The PReferentially expressed Antigen in MElanoma (PRAME) protein has been shown to be an independent biomarker for increased risk of metastasis in Class 1 uveal melanomas (UM). Intrinsically disordered proteins and regions of proteins (IDPs/IDPRs) are proteins that do not have a well-defined three-dimensional structure and have been linked to neoplastic development. Our study aimed to evaluate the presence of intrinsic disorder in PRAME and the role these structureless regions have in PRAME( +) Class 1 UM. METHODS A bioinformatics study to characterize PRAME's propensity for the intrinsic disorder. We first used the AlphaFold tool to qualitatively assess the protein structure of PRAME. Then we used the Compositional Profiler and a set of per-residue intrinsic disorder predictors to quantify the intrinsic disorder. The Database of Disordered Protein Prediction (D2P2) platform, IUPred, FuzDrop, fIDPnn, AUCpred, SPOT-Disorder2, and metapredict V2 allowed us to evaluate the potential functional disorder of PRAME. Additionally, we used the Search Tool for the Retrieval of Interacting Genes (STRING) to analyze PRAME's potential interactions with other proteins. RESULTS Our structural analysis showed that PRAME contains intrinsically disordered protein regions (IDPRs), which are structureless and flexible. We found that PRAME is significantly enriched with serine (p-value < 0.05), a disorder-promoting amino acid. PRAME was found to have an average disorder score of 16.49% (i.e., moderately disordered) across six per-residue intrinsic disorder predictors. Our IUPred analysis revealed the presence of disorder-to-order transition (DOT) regions in PRAME near the C-terminus of the protein (residues 475-509). The D2P2 platform predicted a region from approximately 140 and 175 to be highly concentrated with post-translational modifications (PTMs). FuzDrop predicted the PTM hot spot of PRAME to be a droplet-promoting region and an aggregation hotspot. Finally, our analysis using the STRING tool revealed that PRAME has significantly more interactions with other proteins than expected for randomly selected proteins of the same size, with the ability to interact with 84 different partners (STRING analysis result: p-value < 1.0 × 10-16; model confidence: 0.400). CONCLUSION Our study revealed that PRAME has IDPRs that are possibly linked to its functionality in the context of Class 1 UM. The regions of functionality (i.e., DOT regions, PTM sites, droplet-promoting regions, and aggregation hotspots) are localized to regions of high levels of disorder. PRAME has a complex protein-protein interaction (PPI) network that may be secondary to the structureless features of the polypeptide. Our findings contribute to our understanding of UM and suggest that IDPRs and DOT regions in PRAME may be targeted in developing new therapies for this aggressive cancer. Video Abstract.
Collapse
Affiliation(s)
- Michael Antonietti
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | | | - Mak Djulbegovic
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, FL, 33612, Tampa, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, FL, 33612, Tampa, USA
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, PA, Philadelphia, USA
| | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
He LF, Mou P, Yang CH, Huang C, Shen Y, Zhang JD, Wei RL. Single-cell sequencing in primary intraocular tumors: understanding heterogeneity, the microenvironment, and drug resistance. Front Immunol 2023; 14:1194590. [PMID: 37359513 PMCID: PMC10287964 DOI: 10.3389/fimmu.2023.1194590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Retinoblastoma (RB) and uveal melanoma (UM) are the most common primary intraocular tumors in children and adults, respectively. Despite continued increases in the likelihood of salvaging the eyeball due to advancements in local tumor control, prognosis remains poor once metastasis has occurred. Traditional sequencing technology obtains averaged information from pooled clusters of diverse cells. In contrast, single-cell sequencing (SCS) allows for investigations of tumor biology at the resolution of the individual cell, providing insights into tumor heterogeneity, microenvironmental properties, and cellular genomic mutations. SCS is a powerful tool that can help identify new biomarkers for diagnosis and targeted therapy, which may in turn greatly improve tumor management. In this review, we focus on the application of SCS for evaluating heterogeneity, microenvironmental characteristics, and drug resistance in patients with RB and UM.
Collapse
Affiliation(s)
- Lin-feng He
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Chun-hui Yang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Cheng Huang
- 92882 Troops of the Chinese People’s Liberation Army, Qingdao, China
| | - Ya Shen
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Jin-di Zhang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Rui-li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Akce M, El-Rayes BF, Wajapeyee N. Combinatorial targeting of immune checkpoints and epigenetic regulators for hepatocellular carcinoma therapy. Oncogene 2023; 42:1051-1057. [PMID: 36854723 DOI: 10.1038/s41388-023-02646-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The five-year survival rate of patients with unresectable HCC is about 12%. The liver tumor microenvironment (TME) is immune tolerant and heavily infiltrated with immunosuppressive cells. Immune checkpoint inhibitors (ICIs), in some cases, can reverse tumor cell immune evasion and enhance antitumor immunity. Rapidly evolving ICIs have expanded systemic treatment options in advanced HCC; however, single-agent ICIs achieve a limited 15-20% objective response rate in advanced HCC. Therefore, other combinatorial approaches that amplify the efficacy of ICIs or suppress other tumor-promoting pathways may enhance clinical outcomes. Epigenetic alterations (e.g., changes in chromatin states and non-genetic DNA modifications) have been shown to drive HCC tumor growth and progression as well as their response to ICIs. Recent studies have combined ICIs and epigenetic inhibitors in preclinical and clinical settings to contain several cancers, including HCC. In this review, we outline current ICI treatments for HCC, the mechanism behind their successes and failures, and how ICIs can be combined with distinct epigenetic inhibitors to increase the durability of ICIs and potentially treat "immune-cold" HCC.
Collapse
Affiliation(s)
- Mehmet Akce
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| |
Collapse
|
11
|
Wang J, Wu N, Feng X, Liang Y, Huang M, Li W, Hou L, Yin C. PROS1 shapes the immune-suppressive tumor microenvironment and predicts poor prognosis in glioma. Front Immunol 2023; 13:1052692. [PMID: 36685506 PMCID: PMC9845921 DOI: 10.3389/fimmu.2022.1052692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background Glioma is the most malignant cancer in the brain. As a major vitamin-K-dependent protein in the central nervous system, PROS1 not only plays a vital role in blood coagulation, and some studies have found that it was associated with tumor immune infiltration. However, the prognostic significance of PROS1 in glioma and the underlying mechanism of PROS1 in shaping the tumor immune microenvironment (TIME) remains unclear. Methods The raw data (including RNA-seq, sgRNA-seq, clinicopathological variables and prognosis, and survival data) were acquired from public databases, including TCGA, GEPIA, CGGA, TIMER, GEO, UALCAN, and CancerSEA. GO enrichment and KEGG pathway analyses were performed using "cluster profiler" package and visualized by the "ggplot2" package. GSEA was conducted using R package "cluster profiler". Tumor immune estimation resource (TIMER) and spearman correlation analysis were applied to evaluate the associations between infiltration levels of immune cells and the expression of PROS1. qRT-PCR and WB were used to assay the expression of PROS1. Wound-healing assay, transwell chambers assays, and CCK-8 assays, were performed to assess migration and proliferation. ROC and KM curves were constructed to determine prognostic significance of PROS1 in glioma. Results The level of PROS1 expression was significantly increased in glioma in comparison to normal tissue, which was further certificated by qRT-PCR and WB in LN-229 and U-87MG glioma cells. High expression of PROS1 positively correlated with inflammation, EMT, and invasion identified by CancerSEA, which was also proved by downregulation of PROS1 could suppress cells migration, and proliferation in LN-229 and U-87MG glioma cells. GO and KEGG analysis suggested that PROS1 was involved in disease of immune system and T cell antigen receptor pathway. Immune cell infiltration analysis showed that expression of PROS1 was negatively associated with pDC and NK CD56 bright cells while positively correlated with Macrophages, Neutrophils in glioma. Immune and stromal scores analysis indicated that PROS1 was positively associated with immune score. The high level of PROS1 resulted in an immune suppressive TIME via the recruitment of immunosuppressive molecules. In addition, Increased expression of PROS1 was correlated with T-cell exhaustion, M2 polarization, poor Overall-Survival (OS) in glioma. And it was significantly related to tumor histological level, age, primary therapy outcome. The results of our experiment and various bioinformatics approaches validated that PROS1 was a valuable poor prognostic marker. Conclusion Increased expression of PROS1 was correlated with malignant phenotype and associated with poor prognosis in glioma. Besides, PROS1 could be a possible biomarker and potential immunotherapeutic target through promoting the glioma immunosuppressive microenvironment and inducing tumor-associated macrophages M2 polarization.
Collapse
Affiliation(s)
- Jinxiang Wang
- Academician (expert) workstation, Sichuan Key Laboratory of Medical Imaging, Breast Cancer Biotargeting Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Nisha Wu
- Academician (expert) workstation, Sichuan Key Laboratory of Medical Imaging, Breast Cancer Biotargeting Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China,Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowei Feng
- Department of NeuroRehabilitation, Shaanxi Provincial Rehabilitation Hospital, Xi’an, China
| | - Yanling Liang
- Department of Clinical Laboratory, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Meijin Huang
- Department of Oncology, 920th Hospital of People’s Liberation Army (PLA) Joint Logistics Support, Kun ming, Yun nan, China
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China,*Correspondence: Chengliang Yin, ; Lingmi Hou, ; Wenle Li,
| | - Lingmi Hou
- Academician (expert) workstation, Sichuan Key Laboratory of Medical Imaging, Breast Cancer Biotargeting Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China,*Correspondence: Chengliang Yin, ; Lingmi Hou, ; Wenle Li,
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Chengliang Yin, ; Lingmi Hou, ; Wenle Li,
| |
Collapse
|
12
|
Glinkina K, Nemati F, Teunisse AFAS, Gelmi MC, Etienne V, Kuipers MJ, Alsafadi S, Jager MJ, Decaudin D, Jochemsen AG. Preclinical Evaluation of Trabectedin in Combination With Targeted Inhibitors for Treatment of Metastatic Uveal Melanoma. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 36515935 PMCID: PMC9756579 DOI: 10.1167/iovs.63.13.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Uveal melanoma (UM) is considered a rare disease; yet, it is the most common intraocular malignancy in adults. Although the primary tumor may be efficiently managed, more than 50% of patients with UM develop distant metastases. The mortality at the first year after diagnosis of metastatic UM has been estimated at 81%, and the poor prognosis has not improved in the past years due to the lack of effective therapies. Methods In order to search for novel therapeutic possibilities for metastatic UM, we performed a small-scale screen of targeted drug combinations. We verified the targets of the tested compounds by western blotting and PCR and clarified the mechanism of action of the selected combinations by caspase 3 and 7 activity assay and flow cytometry. The best two combinations were tested in a mouse patient-derived xenograft (PDX) UM model as putative therapeutics for metastatic UM. Results Combinations of the multitarget drug trabectedin with either the CK2/CLK double-inhibitor CX-4945 (silmitasertib) or the c-MET/TAM (TYRO3, Axl, MERTK) receptor inhibitors foretinib and cabozantinib demonstrated synergistic effects and induced apoptosis (relative caspase 3 and 7 activity increased up to 20.5-fold in UM cell lines). In the case of the combination of foretinib and cabozantinib, inhibition of the TAM receptors, but not c-Met, was essential to inhibit the growth of UM cells. Monotreatment with trabectedin inhibited tumor growth by 42%, 49%, and 35% in the MM26, MM309, and MM339 PDX mouse models, respectively. Conclusions Trabectedin alone or in combination with cabozantinib inhibited tumor growth in PDX UM mouse models. Blocking of MERTK, rather than TYRO3, activity inhibited UM cell growth and synergized with trabectedin.
Collapse
Affiliation(s)
- Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vesnie Etienne
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Muriel J. Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France,Department of Medical Oncology, Institut Curie, PSL University, Paris, France
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Chatziioannou E, Aydin SA, Forchhammer S, Sinnberg T, Eigentler T. [Melanoma-associated macrophages-from molecular signals to therapeutic application]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:915-928. [PMID: 36394590 DOI: 10.1007/s00105-022-05077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Macrophages are an important component of the innate immune system. They are abbreviated as Mφ, MΦ, or MP. The name is derived from Greek: large eaters, μακρóς (makrós) = large, φαγεῖν (phagein) = to eat, because they engulf and digest pathogens. Tumor-associated macrophages (TAMs) are associated with drug resistance in cancers, including melanoma, and targeting them may improve cancer treatment. OBJECTIVES The purpose of this article is to examine the role of TAMs in cancer, particularly in melanoma. The relationship between TAM and treatment resistance and their potential application in the treatment of melanoma are discussed. MATERIALS AND METHODS A literature search in PubMed and Google Scholar databases for TAM and melanoma was performed. Clinical trials were searched via clinicaltrials.gov and graphical representations were created using BioRender. RESULTS In melanoma, macrophages are among the most abundant immune cells in the tumor microenvironment (TME). TAMs are associated with poor prognosis and resistance. They are involved in tumorigenesis and metastasis development. M2 is the predominant type of TAM and the M2 markers CD163 and CD204 are unfavorable prognostic biomarkers. Therapeutic approaches aim to decrease their recruitment, modulate their function, or reprogram them. Treatment using chimeric antigen receptor (CAR)-M cells and nanoparticles are currently being investigated. Drugs being tested for melanoma include signal transducer and activator of transcription 3 (STAT3) inhibitors, macrophage colony-stimulating factor (M-CSF) antagonists, interferons (IFN), talimogene laherparepvec (TVEC), histone deacetylase (HDAC) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, colony-stimulating factor 1 receptor (CSF-1R) antagonists, CD40 agonists, arginase 1 (ARG-1) inhibitors, and phosphoinositide 3‑kinase γ (PI3K-γ) inhibitors. CONCLUSIONS TAMs participate in developing resistance to current melanoma therapies. Treatment directed against them may help reduce the development of resistance and improve survival.
Collapse
Affiliation(s)
- Eftychia Chatziioannou
- Universitätshautklinik, Universitätsklinikum Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Deutschland
| | - Serra Atilla Aydin
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Luisenstr. 2, 10117, Berlin, Deutschland
| | - Stephan Forchhammer
- Universitätshautklinik, Universitätsklinikum Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Deutschland
| | - Tobias Sinnberg
- Universitätshautklinik, Universitätsklinikum Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Luisenstr. 2, 10117, Berlin, Deutschland
| | - Thomas Eigentler
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Luisenstr. 2, 10117, Berlin, Deutschland.
| |
Collapse
|
14
|
Setlai BP, Mkhize-Kwitshana ZL, Mehrotra R, Mulaudzi TV, Dlamini Z. Microbiomes, Epigenomics, Immune Response, and Splicing Signatures Interplay: Potential Use of Combination of Regulatory Pathways as Targets for Malignant Mesothelioma. Int J Mol Sci 2022; 23:8991. [PMID: 36012262 PMCID: PMC9409175 DOI: 10.3390/ijms23168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant mesotheliomas (MM) are hard to treat malignancies with poor prognosis and high mortality rates. This cancer is highly misdiagnosed in Sub-Saharan African countries. According to literature, the incidence of MM is likely to increase particularly in low-middle-income countries (LMICs). The burden of asbestos-induced diseases was estimated to be about 231,000 per annum. Lack of awareness and implementation of regulatory frameworks to control exposure to asbestos fibers contributes to the expected increase. Exposure to asbestos fibers can lead to cancer initiation by several mechanisms. Asbestos-induced epigenetic modifications of gene expression machinery and non-coding RNAs promote cancer initiation and progression. Furthermore, microbiome-epigenetic interactions control the innate and adaptive immunity causing exacerbation of cancer progression and therapeutic resistance. This review discusses epigenetic mechanisms with more focus on miRNAs and their interaction with the microbiome. The potential use of epigenetic alterations and microbiota as specific biomarkers to aid in the early detection and/or development of therapeutic targets is explored. The advancement of combinatorial therapies to prolong overall patient survival or possible eradication of MM especially if it is detected early is discussed.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Ravi Mehrotra
- India Cancer Research Consortium (ICMR-DHR), Department of Health Research, Red Cross Road, New Delhi 110001, India
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|