1
|
Anil A, Stokes AM, Karis JP, Bell LC, Eschbacher J, Jennings K, Prah MA, Hu LS, Boxerman JL, Schmainda KM, Quarles CC. Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma. AJNR Am J Neuroradiol 2024; 45:1545-1551. [PMID: 38782593 PMCID: PMC11448978 DOI: 10.3174/ajnr.a8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol. This study aimed to identify the rCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS Fifty-two patients with grade-IV glioblastoma who had prior surgical resection and received chemotherapy and radiation therapy were included in the study. Two sets of DSC-MR imaging data were collected sequentially first by using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and coregistered with the anatomic postcontrast T1-weighted images. The reference MFA-based FTB maps were computed by using previously published sRCBV thresholds (1.0 and 1.56). A receiver operating characteristics (ROC) analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS The mean sRCBV values of tumors across patients exhibited strong agreement (concordance correlation coefficient = 0.99) between the 2 protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSIONS For LFA-based FTB maps, an sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumors. FTB maps aid in surgical planning, guiding pathologic diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MR imaging.
Collapse
Affiliation(s)
- Aliya Anil
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley M Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - John P Karis
- Department of Neuroradiology (J.P.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - Laura C Bell
- Clinical Imaging Group (L.C.B.), Genentech Inc., San Francisco, California
| | - Jennifer Eschbacher
- Department of Neuropathology (J.E.), Barrow Neurological Institute, Phoenix, Arizona
| | - Kristofer Jennings
- Department of Biostatistics (K.J.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leland S Hu
- Department of Radiology (L.S.H.), Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - C Chad Quarles
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Herings SDA, van der Wijk MW, von Beckerath V, Fasen BACM, Meijer FJA, van der Kolk AG, Henssen DJHA. Fractional tumor burden maps increase the confidence of reading brain MR perfusion. Eur J Radiol 2024; 178:111644. [PMID: 39084028 DOI: 10.1016/j.ejrad.2024.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
RATIONALE AND OBJECTIVES Various methods exist to perform and post-process perfusion weighted MR imaging in the post-treatment imaging of glioma patients to differentiate tumor progression from tumor-related abnormalities. One of these post-processing methods produces 'fractional tumor burden' maps. This multi-reader study investigated the clinical feasibility of fractional tumor burden maps on real world data from radiological follow-up of high-grade astrocytoma patients. METHODS Five readers with background in radiology and varying levels of experience were tasked with assessing 30 astrocytoma and glioblastoma patients during one reader session. First, they were provided with a dataset of conventional MRI sequences, including perfusion MRI with regional cerebral blood volume maps. Then the dataset was expanded with a corresponding fractional tumor burden maps. Diagnostic accuracy, duration of post-processing, duration of the assessment of the fractional tumor burden maps, the diagnostic confidence reported by the readers and their diagnoses were recorded. Final diagnosis was determined by clinical and radiological follow-up and/or histopathological data used as gold standard. RESULTS A mean sensitivity of 83.3 % and mean specificity of 55.1 % was obtained without the use of fractional tumor burden maps, whereas their additional of fractional tumor burden maps resulted in a mean sensitivity and specificity of 79.5 % and 54.2 %, respectively. Diagnostic accuracies with and without fractional tumor burden maps were not significantly different (Z = 0.76, p = 0.450). The median time spent post-processing was 313 s, while the median duration of the assessment of the FTB maps was 19 s. Interestingly, reader confidence increased significantly after adding the fractional tumor burden-maps to the assessment (Z = 454, p < 0.01). CONCLUSIONS While the use of fractional tumor burden maps does not carry additional value in the radiological follow-up of post-operative high-grade astrocytoma and glioblastoma patients, it does give readers more confidence in their diagnosis.
Collapse
Affiliation(s)
- Siem D A Herings
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands.
| | - Marte W van der Wijk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Victoria von Beckerath
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram A C M Fasen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Pan SD, Osborne JR, Chiang GC, Ramakrishna R, Tsiouris AJ, Fine HA, Ivanidze J. Positron Emission Tomography and Magnetic Resonance Imaging Findings in the Diagnosis of Stroke-Like Migraine Attacks after Radiation Therapy Syndrome: A Case Report. Adv Radiat Oncol 2024; 9:101567. [PMID: 39253332 PMCID: PMC11381580 DOI: 10.1016/j.adro.2024.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/13/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Steven D Pan
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Rohan Ramakrishna
- Department of Neurosurgery, Weill Cornell Medicine, New York, New York
| | | | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, New York
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
4
|
Bhangale PN, Kashikar SV, Kasat PR, Shrivastava P, Kumari A. A Comprehensive Review on the Role of MRI in the Assessment of Supratentorial Neoplasms: Comparative Insights Into Adult and Pediatric Cases. Cureus 2024; 16:e67553. [PMID: 39310617 PMCID: PMC11416707 DOI: 10.7759/cureus.67553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) is a critical diagnostic tool in assessing supratentorial neoplasms, offering unparalleled detail and specificity in brain imaging. Supratentorial neoplasms in the cerebral hemispheres, basal ganglia, thalamus, and other structures above the tentorium cerebelli present significant diagnostic and therapeutic challenges. These challenges vary notably between adult and pediatric populations due to differences in tumor types, biological behavior, and patient management strategies. This comprehensive review explores the role of MRI in diagnosing, planning treatment, monitoring response, and detecting recurrence in supratentorial neoplasms, providing comparative insights into adult and pediatric cases. The review begins with an overview of the epidemiology and pathophysiology of these tumors in different age groups, followed by a detailed examination of standard and advanced MRI techniques, including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and magnetic resonance spectroscopy (MRS). We discuss the specific imaging characteristics of various neoplasms and the importance of tailored approaches to optimize diagnostic accuracy and therapeutic efficacy. The review also addresses the technical and interpretative challenges unique to pediatric imaging and the implications for long-term patient outcomes. By highlighting the comparative utility of MRI in adult and pediatric cases, this review aims to enhance the understanding of its pivotal role in managing supratentorial neoplasms. It underscores the necessity of age-specific diagnostic and therapeutic strategies. Emerging MRI technologies and future research directions are also discussed, emphasizing the potential for advancements in personalized imaging approaches and improved patient care across all age groups.
Collapse
Affiliation(s)
- Paritosh N Bhangale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyal Shrivastava
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anjali Kumari
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Giordano C, Marrone L, Romano S, Della Pepa GM, Donzelli CM, Tufano M, Capasso M, Lasorsa VA, Quintavalle C, Guerri G, Martucci M, Auricchio A, Gessi M, Sala E, Olivi A, Romano MF, Gaudino S. The FKBP51s Splice Isoform Predicts Unfavorable Prognosis in Patients with Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1296-1306. [PMID: 38651817 PMCID: PMC11097923 DOI: 10.1158/2767-9764.crc-24-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by MRI. However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAM) are abundant in GBM tumor microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2 polarization. To find an immunologic signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 patients with GBM using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and regulatory T cells in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages cocultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Cocultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem cells. Cocultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and were accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring. SIGNIFICANCE Our research suggests that by combining imaging with analysis of monocyte/macrophage subsets in patients with GBM, we can enhance our understanding of the disease and assist in its treatment. We discovered a similarity in the macrophage composition between the TME and PB, and through association with imaging, we could interpret macrophages. In addition, we identified a predictive biomarker that drew more attention to immune suppression of patients with GBM.
Collapse
Affiliation(s)
- Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Marrone
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Simona Romano
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Giuseppe Maria Della Pepa
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Carlo Maria Donzelli
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Martina Tufano
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Mario Capasso
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Vito Alessandro Lasorsa
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Cristina Quintavalle
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore” (IEOS), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italia
| | - Giulia Guerri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Annamaria Auricchio
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Marco Gessi
- UOS di Neuropatologia, UOC Anatomia Patologica, Fondazione Policlinico “A. Gemelli” IRCCS, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Olivi
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Maria Fiammetta Romano
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Yang S, Sun Y, Liu W, Zhang Y, Sun G, Xiang B, Yang J. Exosomes in Glioma: Unraveling Their Roles in Progression, Diagnosis, and Therapy. Cancers (Basel) 2024; 16:823. [PMID: 38398214 PMCID: PMC10887132 DOI: 10.3390/cancers16040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Gliomas, the most prevalent primary malignant brain tumors, present a challenging prognosis even after undergoing surgery, radiation, and chemotherapy. Exosomes, nano-sized extracellular vesicles secreted by various cells, play a pivotal role in glioma progression and contribute to resistance against chemotherapy and radiotherapy by facilitating the transportation of biological molecules and promoting intercellular communication within the tumor microenvironment. Moreover, exosomes exhibit the remarkable ability to traverse the blood-brain barrier, positioning them as potent carriers for therapeutic delivery. These attributes hold promise for enhancing glioma diagnosis, prognosis, and treatment. Recent years have witnessed significant advancements in exosome research within the realm of tumors. In this article, we primarily focus on elucidating the role of exosomes in glioma development, highlighting the latest breakthroughs in therapeutic and diagnostic approaches, and outlining prospective directions for future research.
Collapse
Affiliation(s)
- Song Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yumeng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Wei Liu
- Department of Immunology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Zhang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Bai Xiang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
| | - Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
7
|
Chen Q, Wang K, Ren X, Zhao X, Chen Q, Fan D, Zhang S, Li X, Ai L. Individualized discrimination of tumor progression from treatment-related changes in different types of adult-type diffuse gliomas using [ 11C]methionine PET. J Neurooncol 2023; 165:547-559. [PMID: 38095773 DOI: 10.1007/s11060-023-04529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE This study aimed to assess the ability of [11C]methionine (MET) PET in distinguishing between tumor progression (TP) and treatment-related changes (TRCs) among different types of adult-type diffuse gliomas according to the 2021 World Health Organization classification and predict overall survival (OS). METHODS We retrospectively selected 113 patients with adult-type diffuse gliomas with suspected TP who underwent MET PET imaging. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and metabolic tumor volume (MTV) were calculated. Diagnoses were verified by histopathology (n = 50) or by clinical/radiological follow-up (n = 63). The diagnostic performance of MET PET parameters was evaluated through receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculation. Survival analysis employed the Kaplan-Meier method and Cox proportional-hazards regression. RESULTS TP and TRCs were diagnosed in 76 (67%) and 37 (33%) patients, respectively. ROC analysis revealed TBRmax had the best performance in differentiating TP from TRCs with a cut-off of 1.96 in IDH-mutant astrocytoma (AUC, 0.87; sensitivity, 93%; specificity 69%), 1.80 in IDH-mutant and 1p/19q-codeleted oligodendroglioma (AUC, 0.96; sensitivity, 100%; specificity, 89%), and 2.13 in IDH wild-type glioblastoma (AUC, 0.89; sensitivity, 89%; specificity, 78%), respectively. On multivariate analysis, higher TBRmean and MTV were significantly correlated with shorter OS in all IDH-mutant gliomas, as well as in IDH-mutant astrocytoma subgroup. CONCLUSION This work confirms that MET PET has varying diagnostic performances in distinguishing TP from TRCs within three types of adult-type diffuse gliomas, and highlights its high diagnostic accuracy in IDH-mutant and 1p/19q-codeleted oligodendroglioma and potential prognostic value for IDH-mutant gliomas, particularly IDH-mutant astrocytoma.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Kai Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Shu Zhang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Xiaotong Li
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China.
| |
Collapse
|
8
|
Llaguno-Munive M, Villalba-Abascal W, Avilés-Salas A, Garcia-Lopez P. Near-Infrared Fluorescence Imaging in Preclinical Models of Glioblastoma. J Imaging 2023; 9:212. [PMID: 37888319 PMCID: PMC10607214 DOI: 10.3390/jimaging9100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer is a public health problem requiring ongoing research to improve current treatments and discover novel therapies. More accurate imaging would facilitate such research. Near-infrared fluorescence has been developed as a non-invasive imaging technique capable of visualizing and measuring biological processes at the molecular level in living subjects. In this work, we evaluate the tumor activity in two preclinical glioblastoma models by using fluorochrome (IRDye 800CW) coupled to different molecules: tripeptide Arg-Gly-Asp (RGD), 2-amino-2-deoxy-D-glucose (2-DG), and polyethylene glycol (PEG). These molecules interact with pathological conditions of tumors, including their overexpression of αvβ3 integrins (RGD), elevated glucose uptake (2-DG), and enhanced permeability and retention effect (PEG). IRDye 800CW RGD gave the best in vivo fluorescence signal from the tumor area, which contrasted well with the low fluorescence intensity of healthy tissue. In the ex vivo imaging (dissected tumor), the accumulation of IRDye 800CW RGD could be appreciated at the tumor site. Glioblastoma tumors were presently detected with specificity and sensitivity by utilizing IRDye 800CW RGD, a near-infrared fluorophore combined with a marker of αvβ3 integrin expression. Further research is needed on its capacity to monitor tumor growth in glioblastoma after chemotherapy.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Wilberto Villalba-Abascal
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
| | - Alejandro Avilés-Salas
- Departamento de Patología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
| |
Collapse
|
9
|
Muoio B, Espeli V, Treglia G. Neuro-Oncology and Positron Emission Tomography: "Just Can't Get Enough". Cancers (Basel) 2023; 15:4739. [PMID: 37835432 PMCID: PMC10571959 DOI: 10.3390/cancers15194739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Imaging has a pivotal role in neuro-oncology for the management of primary and secondary brain tumors [...].
Collapse
Affiliation(s)
- Barbara Muoio
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland; (B.M.); (V.E.)
| | - Vittoria Espeli
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland; (B.M.); (V.E.)
| | - Giorgio Treglia
- Division of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
10
|
Martucci M, Russo R, Giordano C, Schiarelli C, D’Apolito G, Tuzza L, Lisi F, Ferrara G, Schimperna F, Vassalli S, Calandrelli R, Gaudino S. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15:3790. [PMID: 37568606 PMCID: PMC10417432 DOI: 10.3390/cancers15153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Chiara Schiarelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Laura Tuzza
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesca Lisi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Giuseppe Ferrara
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesco Schimperna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Stefania Vassalli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| |
Collapse
|
11
|
Kantelhardt S. New Strategies in Diagnosis and Treatments for Brain Tumors. Cancers (Basel) 2023; 15:cancers15112879. [PMID: 37296841 DOI: 10.3390/cancers15112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
In general, cancer is one of the most frequent causes of death [...].
Collapse
Affiliation(s)
- Sven Kantelhardt
- Department of Neurosurgery, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249 Berlin, Germany
| |
Collapse
|
12
|
Negroni D, Bono R, Soligo E, Longo V, Cossandi C, Carriero A, Stecco A. T1-Weighted Contrast Enhancement, Apparent Diffusion Coefficient, and Cerebral-Blood-Volume Changes after Glioblastoma Resection: MRI within 48 Hours vs. beyond 48 Hours. Tomography 2023; 9:342-351. [PMID: 36828379 PMCID: PMC9967426 DOI: 10.3390/tomography9010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of the study is to identify the advantages, if any, of post-operative MRIs performed at 48 h compared to MRIs performed after 48 h in glioblastoma surgery. MATERIALS AND METHODS To assess the presence of a residual tumor, the T1-weighted Contrast Enhancement (CE), Apparent Diffusion Coefficient (ADC), and Cerebral Blood Volume (rCBV) in the proximity of the surgical cavity were considered. The rCBV ratio was calculated by comparing the rCBV with the contralateral normal white matter. After the blind image examinations by the two radiologists, the patients were divided into two groups according to time window after surgery: ≤48 h (group 1) and >48 h (group 2). RESULTS A total of 145 patients were enrolled; at the 6-month follow-up MRI, disease recurrence was 89.9% (125/139), with a mean patient survival of 8.5 months (SD 7.8). The mean ADC and rCBV ratio values presented statistical differences between the two groups (p < 0.05). Of these 40 patients in whom an ADC value was not obtained, the rCBV values could not be calculated in 52.5% (21/40) due to artifacts (p < 0.05). CONCLUSION The study showed differences in CE, rCBV, and ADC values between the groups of patients undergoing MRIs before and after 48 h. An MRI performed within 48 h may increase the ability of detecting GBM by the perfusion technique with the calculation of the rCBV ratio.
Collapse
Affiliation(s)
- Davide Negroni
- Radiology Department, Maggiore della Carità Hospital of Novara, 28100 Novara, Italy
- Correspondence:
| | - Romina Bono
- Radiology Department, Maggiore della Carità Hospital of Novara, 28100 Novara, Italy
| | - Eleonora Soligo
- Radiology Department, San Andrea Hospital of Vercelli, 13100 Vercelli, Italy
| | - Vittorio Longo
- Radiology Department, Maggiore della Carità Hospital of Novara, 28100 Novara, Italy
| | - Christian Cossandi
- Neurosurgery Department, Maggiore della Carità Hospital of Novara, 28100 Novara, Italy
| | - Alessandro Carriero
- Radiology Department, Maggiore della Carità Hospital of Novara, 28100 Novara, Italy
| | - Alessandro Stecco
- Radiology Department, Maggiore della Carità Hospital of Novara, 28100 Novara, Italy
| |
Collapse
|
13
|
Martucci M, Russo R, Schimperna F, D’Apolito G, Panfili M, Grimaldi A, Perna A, Ferranti AM, Varcasia G, Giordano C, Gaudino S. Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives. Biomedicines 2023; 11:364. [PMID: 36830900 PMCID: PMC9953338 DOI: 10.3390/biomedicines11020364] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all phases of patient management, starting from diagnosis, through therapy planning, to treatment response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing the technical aspects, strength and limits of each MR technique is crucial to correctly interpret MR brain studies and to address clinicians to the best treatment strategy. This article aimed to provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the non-morphological techniques, and finally highlighted future perspectives, such as radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessandro Grimaldi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Perna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppe Varcasia
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
14
|
Anil A, Stokes AM, Chao R, Hu LS, Alhilali L, Karis JP, Bell LC, Quarles CC. Identification of single-dose, dual-echo based CBV threshold for fractional tumor burden mapping in recurrent glioblastoma. Front Oncol 2023; 13:1046629. [PMID: 36733305 PMCID: PMC9887158 DOI: 10.3389/fonc.2023.1046629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Background Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is widely used to distinguish high grade glioma recurrence from post treatment radiation effects (PTRE). Application of rCBV thresholds yield maps to distinguish between regional tumor burden and PTRE, a biomarker termed the fractional tumor burden (FTB). FTB is generally measured using conventional double-dose, single-echo DSC-MRI protocols; recently, a single-dose, dual-echo DSC-MRI protocol was clinically validated by direct comparison to the conventional double-dose, single-echo protocol. As the single-dose, dual-echo acquisition enables reduction in the contrast agent dose and provides greater pulse sequence parameter flexibility, there is a compelling need to establish dual-echo DSC-MRI based FTB mapping. In this study, we determine the optimum standardized rCBV threshold for the single-dose, dual-echo protocol to generate FTB maps that best match those derived from the reference standard, double-dose, single-echo protocol. Methods The study consisted of 23 high grade glioma patients undergoing perfusion scans to confirm suspected tumor recurrence. We sequentially acquired single dose, dual-echo and double dose, single-echo DSC-MRI data. For both protocols, we generated leakage-corrected standardized rCBV maps. Standardized rCBV (sRCBV) thresholds of 1.0 and 1.75 were used to compute single-echo FTB maps as the reference for delineating PTRE (sRCBV < 1.0), tumor with moderate angiogenesis (1.0 < sRCBV < 1.75), and tumor with high angiogenesis (sRCBV > 1.75) regions. To assess the sRCBV agreement between acquisition protocols, the concordance correlation coefficient (CCC) was computed between the mean tumor sRCBV values across the patients. A receiver operating characteristics (ROC) analysis was performed to determine the optimum dual-echo sRCBV threshold. The sensitivity, specificity, and accuracy were compared between the obtained optimized threshold (1.64) and the standard reference threshold (1.75) for the dual-echo sRCBV threshold. Results The mean tumor sRCBV values across the patients showed a strong correlation (CCC = 0.96) between the two protocols. The ROC analysis showed maximum accuracy at thresholds of 1.0 (delineate PTRE from tumor) and 1.64 (differentiate aggressive tumors). The reference threshold (1.75) and the obtained optimized threshold (1.64) yielded similar accuracy, with slight differences in sensitivity and specificity which were not statistically significant (1.75 threshold: Sensitivity = 81.94%; Specificity: 87.23%; Accuracy: 84.58% and 1.64 threshold: Sensitivity = 84.48%; Specificity: 84.97%; Accuracy: 84.73%). Conclusions The optimal sRCBV threshold for single-dose, dual-echo protocol was found to be 1.0 and 1.64 for distinguishing tumor recurrence from PTRE; however, minimal differences were observed when using the standard threshold (1.75) as the upper threshold, suggesting that the standard threshold could be used for both protocols. While the prior study validated the agreement of the mean sRCBV values between the protocols, this study confirmed that their voxel-wise agreement is suitable for reliable FTB mapping. Dual-echo DSC-MRI acquisitions enable robust single-dose sRCBV and FTB mapping, provide pulse sequence parameter flexibility and should improve reproducibility by mitigating variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Aliya Anil
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Ashley M. Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Renee Chao
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Leland S. Hu
- Department of Radiology, Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Lea Alhilali
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, United States
| | - John P. Karis
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, United States
| | - Laura C. Bell
- Early Clinical Development, Genentech, San Francisco, CA, United States
| | - C. Chad Quarles
- Cancer System Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: C. Chad Quarles,
| |
Collapse
|
15
|
Different Approaches to Study Molecular Blueprint and Biological Behavior of Brain Tumors: Editorial to the Special Issue "Advances in Molecular Genetics of Brain Tumors". Int J Mol Sci 2023; 24:ijms24020948. [PMID: 36674461 PMCID: PMC9865200 DOI: 10.3390/ijms24020948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer remains one of the leading causes of mortality worldwide [...].
Collapse
|
16
|
De Lucia F, Lefebvre Y, Lemort MP. Interest of routine MR spectroscopic techniques for differential diagnosis between radionecrosis and progression of brain tumor lesions. Eur J Radiol Open 2022; 9:100449. [DOI: 10.1016/j.ejro.2022.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
|