1
|
Letai A, de The H. Conventional chemotherapy: millions of cures, unresolved therapeutic index. Nat Rev Cancer 2024:10.1038/s41568-024-00778-4. [PMID: 39681637 DOI: 10.1038/s41568-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared. In contrast, in more recent years, patients with cancer have benefited from targeted therapies that usually do not cure but whose mechanisms of therapeutic index are, at least superficially, understood. In this Perspective, we will explore the various and sometimes contradictory models that have attempted to explain why chemotherapy can cure some patients with cancer, and what gaps in our understanding of the therapeutic index of chemotherapy remain to be filled. We will summarize principles which have benefited curative conventional chemotherapy regimens in the past, principles which might be deployed in constructing combinations that include modern targeted therapies.
Collapse
Affiliation(s)
- Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Hugues de The
- College de France, CIRB, INSERM, CNRS, Université PSL Paris, Paris, France.
- Hematology Laboratory, St Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
- IRSL, INSERM, CNRS, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
3
|
Scattolin D, Maso AD, Ferro A, Frega S, Bonanno L, Guarneri V, Pasello G. The emerging role of Schlafen-11 (SLFN11) in predicting response to anticancer treatments: Focus on small cell lung cancer. Cancer Treat Rev 2024; 128:102768. [PMID: 38797062 DOI: 10.1016/j.ctrv.2024.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small cell lung cancer (SCLC) is characterized by a dismal prognosis. Many efforts have been made so far for identifying novel biomarkers for a personalized treatment for SCLC patients. Schlafen 11 (SLFN11) is a protein differently expressed in many cancers and recently emerged as a new potential biomarker. Lower expression of SLFN11 correlates with a worse prognosis in SCLC and other tumors. SLFN11 has a role in tumorigenesis, inducing replication arrest in the presence of DNA damage through the block of the replication fork. SLFN11 interacts also with chromatin accessibility, proteotoxic stress and mammalian target of rapamycin signalling pathway. The expression of SLFN11 is regulated by epigenetic mechanisms, including promoter methylation, histone deacetylation, and the histone methylation. The downregulation of SLFN11 correlates with a worse response to topoisomerase I and II inhibitors, alkylating agents, and poly ADP-ribose polymerase inhibitors in different cancer types. Some studies exploring strategies for overcoming drug resistance in tumors with low levels of SLFN11 showed promising results. One of these strategies includes the interaction with the Ataxia Telangiectasia and Rad3-related pathway, constitutively activated and leading to cell survival and tumor growth in the presence of low levels of SLFN11. Furthermore, the expression of SLFN11 is dynamic through time and different anticancer therapy and liquid biopsy seems to be an attractive tool for catching SLFN11 different expressions. Despite this, further investigations exploring SLFN11 as a predictive biomarker, its longitudinal changes, and new strategies to overcome drug resistances are needed.
Collapse
Affiliation(s)
- Daniela Scattolin
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Frega
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Sua LF, Serrano-Gomez SJ, Nuñez M, Amezquita-Dussan MA, Fernández-Trujillo L. Diagnostic potential of protein serum biomarkers for distinguishing small and non-small cell lung cancer in patients with suspicious lung lesions. Biomarkers 2024; 29:315-323. [PMID: 38804910 DOI: 10.1080/1354750x.2024.2360038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Biomarkers play a role in identifying, managing, and predicting cancer outcomes. In lung cancer, they are used at various time points. Doubts remain regarding their accuracy for differential diagnosis and histological subtyping. A diagnostic test study was conducted. It included malignant lesions and controls with benign lesions. Before lung biopsy, all patients had the following biomarkers measured in serum (Pro-GRP,NSE,CYFRA21-1,SCC-Ag,CEA). METHODS The predictive capacity of serum biomarkers was evaluated to discriminate between lung cancer and benign pathology. The accuracy was also assessed for distinguishing between SCLC and NSCLC and explored their ability to perform histological subtyping. RESULTS 93 patients were included, 60 with lung cancer, 33 with benign pathology. Pro-GRP and NSE were elevated in SCLC compared with NSCLC or nonmalignant disease. The most accurate for differentiating between malignant and benign pathology were CEA and CYFRA21-1. Pro-GRP had a poor predictive capacity for distinguishing NSCLC from SCLC. However, combined with CEA and CYFRA21-1, performance improved. For SCLC, the diagnostic capacity of Pro-GRP increased by combining with biomarkers, such as NSE/CYFRA21-1. CONCLUSIONS Biomarkers lacked the sensitivity and specificity for independent differential diagnosis or histological subtyping. However, the observed patterns in biomarker levels associated with specific histological subtypes suggest potential utility in a multi-biomarker approach or in conjunction with other diagnostic tools. This insight could guide future research to improve diagnostic accuracy and personalized treatment strategies in lung cancer.
Collapse
Affiliation(s)
- Luz Fernanda Sua
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | - Silvia J Serrano-Gomez
- Research support and follow-up group, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Marcela Nuñez
- Research support and follow-up group, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | - Liliana Fernández-Trujillo
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Department of Internal Medicine, Pulmonology Service. Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
5
|
Zhang J, Gao A, Wang S, Sun Y, Wu J, Wang D, Ge Y, Li J, Sun H, Cheng Q, Sun Y. Correlation between immune-related adverse events and efficacy of PD-(L)1 inhibitors in small cell lung cancer: a multi-center retrospective study. Respir Res 2024; 25:256. [PMID: 38907273 PMCID: PMC11193240 DOI: 10.1186/s12931-024-02890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Patients receiving PD-(L)1 inhibitors frequently encounter unusual side effects known as immune-related adverse events (irAEs). However, the correlation of irAEs development with clinical response in small cell lung cancer (SCLC) is unknown. METHOD This retrospective study enrolled 244 stage IV SCLC patients who receiving PD-(L)1 inhibitors from 3 cancer centers. The correlation of irAEs with objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS 140 in 244 (57%) patients experienced irAEs, with 122 (87.1%) experiencing one and 18 (12.9%) experiencing two or more. Compared to patient without irAEs, those developing irAEs had higher ORR (73.6% vs. 52.9%, P < 0.001) and DCR (97.9% vs. 79.8%, P < 0.001), as well as prolonged median PFS (8.8 vs. 4.5 months, P < 0.001) and OS (23.2 vs. 21.6 months, P < 0.05). Among the different spectra of irAEs, thyroid dysfunction, rash, and pneumonitis were the most powerful indicator for improved PFS. When analyzed as a time-dependent covariate, the occurrence of irAEs was associated with significant improvement in PFS rather than in OS. Furthermore, patients experiencing multisystem irAEs displayed a longer PFS and OS compared with single-system irAEs and the irAE-free ones. IrAEs grade and steroid use did not impact the predictive value of irAEs on PFS. CONCLUSION The presence of irAEs predicts superior clinical benefit in SCLC. Patients who develop multi-system irAEs may have an improved survival than those developed single-system irAEs and no-irAEs. This association persists even when systemic corticosteroids were used for irAEs management.
Collapse
Affiliation(s)
- Jian Zhang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Aiqin Gao
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Yanxin Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, 250117, Shandong, China
| | - Jiake Wu
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Dahai Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Yihui Ge
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, 250117, Shandong, China
| | - Juan Li
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Haifeng Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, 250117, Shandong, China
| | - Qinglei Cheng
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
6
|
Liu C, Li J, Xu F, Chen L, Ni M, Wu J, Zhao H, Wu Y, Li J, Wu X, Chen X. PARP1-DOT1L transcription axis drives acquired resistance to PARP inhibitor in ovarian cancer. Mol Cancer 2024; 23:111. [PMID: 38778348 PMCID: PMC11110363 DOI: 10.1186/s12943-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.
Collapse
Affiliation(s)
- Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangchun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Fabrizio FP, Sparaneo A, Gorgoglione G, Battista P, Centra F, Delli Muti F, Trombetta D, Centonza A, Graziano P, Rossi A, Fazio VM, Muscarella LA. Effects of KEAP1 Silencing on NRF2 and NOTCH Pathways in SCLC Cell Lines. Cancers (Basel) 2024; 16:1885. [PMID: 38791966 PMCID: PMC11120002 DOI: 10.3390/cancers16101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The KEAP1/NRF2 pathway is a master regulator of several redox-sensitive genes implicated in the resistance of tumor cells against therapeutic drugs. The dysfunction of the KEAP1/NRF2 system has been correlated with neoplastic patients' outcomes and responses to conventional therapies. In lung tumors, the growth and the progression of cancer cells may also involve the intersection between the molecular NRF2/KEAP1 axis and other pathways, including NOTCH, with implications for antioxidant protection, survival of cancer cells, and drug resistance to therapies. At present, the data concerning the mechanism of aberrant NRF2/NOTCH crosstalk as well as its genetic and epigenetic basis in SCLC are incomplete. To better clarify this point and elucidate the contribution of NRF2/NOTCH crosstalk deregulation in tumorigenesis of SCLC, we investigated genetic and epigenetic dysfunctions of the KEAP1 gene in a subset of SCLC cell lines. Moreover, we assessed its impact on SCLC cells' response to conventional chemotherapies (etoposide, cisplatin, and their combination) and NOTCH inhibitor treatments using DAPT, a γ-secretase inhibitor (GSI). We demonstrated that the KEAP1/NRF2 axis is epigenetically controlled in SCLC cell lines and that silencing of KEAP1 by siRNA induced the upregulation of NRF2 with a consequent increase in SCLC cells' chemoresistance under cisplatin and etoposide treatment. Moreover, KEAP1 modulation also interfered with NOTCH1, HES1, and DLL3 transcription. Our preliminary data provide new insights about the downstream effects of KEAP1 dysfunction on NRF2 and NOTCH deregulation in this type of tumor and corroborate the hypothesis of a cooperation of these two pathways in the tumorigenesis of SCLC.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| | - Giusy Gorgoglione
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| | - Pierpaolo Battista
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| | - Flavia Centra
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| | - Francesco Delli Muti
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| | - Domenico Trombetta
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| | - Antonella Centonza
- Oncology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Antonio Rossi
- Oncology Center of Excellence, Therapeutic Science & Strategy Unit, IQVIA, 20124 Milan, Italy
| | - Vito Michele Fazio
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00185 Rome, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.S.); (G.G.); (P.B.); (F.C.); (F.D.M.); (D.T.); (V.M.F.)
| |
Collapse
|
8
|
Liu Q, Li Z, Li N, Liu J, Wu H, Chen J. Nucleic acid-sensing-related gene signature in predicting prognosis and treatment efficiency of small cell lung cancer patients. Front Oncol 2024; 14:1394286. [PMID: 38680855 PMCID: PMC11045993 DOI: 10.3389/fonc.2024.1394286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Nucleic acid-sensing (NAS) pathways could induce innate and adaptive immune responses. However, rare evidence exhibited how the core genes of the NAS pathways affected the immune response and prognosis of small cell lung cancer (SCLC) patients. Methods We conducted a comprehensive bioinformatic analysis based on the RNA profiles of 114 SCLC patients, including 79 from cBioPortal, 21 from GSE30219, and 14 from our sequencing data. The multiplex immunohistochemistry (mIHC) was used to characterize the role of NAS related genes in the tumor microenvironment (TME) of SCLC. Results A prognostic model (7NAS risk model) was constructed based on 7 NAS-related genes which was demonstrated as an independent prognostic index. The low-risk group was identified to have a better prognosis and an immune-activated microenvironment in both the public datasets and our dataset. Intriguingly, mIHC data showed that CD45+ immune cells, CD8+ T lymphocytes, and CD68+ macrophages were prevalently enriched in low-risk SCLC patients and positively correlated with IRF1 expression. Additionally, Patients in the low-risk group might have superior responses to chemotherapy and immunotherapy. Conclusion Conclusively, this study created a new risk model based on genes associated with NAS pathways which could predict the prognosis and response of treatment in patients with SCLC.
Collapse
Affiliation(s)
- Qianshi Liu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaoshen Li
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Junjie Liu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Hong Wu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Majd E, Xing L, Zhang X. Segmentation of patients with small cell lung cancer into responders and non-responders using the optimal cross-validation technique. BMC Med Res Methodol 2024; 24:83. [PMID: 38589775 PMCID: PMC11000309 DOI: 10.1186/s12874-024-02185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The timing of treating cancer patients is an essential factor in the efficacy of treatment. So, patients who will not respond to current therapy should receive a different treatment as early as possible. Machine learning models can be built to classify responders and nonresponders. Such classification models predict the probability of a patient being a responder. Most methods use a probability threshold of 0.5 to convert the probabilities into binary group membership. However, the cutoff of 0.5 is not always the optimal choice. METHODS In this study, we propose a novel data-driven approach to select a better cutoff value based on the optimal cross-validation technique. To illustrate our novel method, we applied it to three clinical trial datasets of small-cell lung cancer patients. We used two different datasets to build a scoring system to segment patients. Then the models were applied to segment patients into the test data. RESULTS We found that, in test data, the predicted responders and non-responders had significantly different long-term survival outcomes. Our proposed novel method segments patients better than the standard approach using a cutoff of 0.5. Comparing clinical outcomes of responders versus non-responders, our novel method had a p-value of 0.009 with a hazard ratio of 0.668 for grouping patients using the Cox proportion hazard model and a p-value of 0.011 using the accelerated failure time model which approved a significant difference between responders and non-responders. In contrast, the standard approach had a p-value of 0.194 with a hazard ratio of 0.823 using the Cox proportion hazard model and a p-value of 0.240 using the accelerated failure time model indicating the responders and non-responders do not differ significantly in survival. CONCLUSION In summary, our novel prediction method can successfully segment new patients into responders and non-responders. Clinicians can use our prediction to decide if a patient should receive a different treatment or stay with the current treatment.
Collapse
Affiliation(s)
- Elham Majd
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xuekui Zhang
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
10
|
Mennecier B, Khalifa J, Descourt R, Greillier L, Naltet C, Falchero L. Real-life clinical management patterns in extensive-stage small cell lung cancer across France: a multi-method study. BMC Cancer 2024; 24:421. [PMID: 38580937 PMCID: PMC10996204 DOI: 10.1186/s12885-024-12117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND We designed this study based on both a physician practice survey and real-world patient data to: (1) evaluate clinical management practices in extensive-stage small cell lung cancer (ES-SCLC) among medical centers located across France; and (2) describe first-line treatment patterns among patients with ES-SCLC following the introduction of immunotherapy into clinical practice. METHODS A 50-item questionnaire was completed by physicians from 45 medical centers specialized in SCLC management. Responses were collected from June 2022 to January 2023. The survey questions addressed diagnostic workup of ES-SCLC, chemoimmunotherapy in first-line and second-line settings, and use of prophylactic cranial irradiation (PCI) and radiotherapy. In parallel, using a chart review approach, we retrospectively analyzed aggregated information from 548 adults with confirmed ES-SCLC receiving first-line treatment in the same centers. RESULTS In ES-SCLC, treatment planning is based on chest computed tomography (CT) (as declared by 100% of surveyed centers). Mean time between diagnosis and treatment initiation was 2-7 days, as declared by 82% of centers. For detection of brain metastases, the most common imaging test was brain CT (84%). The main exclusion criteria for first-line immunotherapy in the centers were autoimmune disease (87%), corticosteroid therapy (69%), interstitial lung disease (69%), and performance status ≥ 2 (69%). Overall, 53% and 36% of centers considered that patients are chemotherapy-sensitive if they relapse within ≥ 3 months or ≥ 6 months after first-line chemoimmunotherapy, respectively. Among the 548 analyzed patients, 409 (75%) received chemoimmunotherapy as a first-line treatment, 374 (91%) of whom received carboplatin plus etoposide and 35 (9%) cisplatin plus etoposide. Overall, 340/548 patients (62%) received maintenance immunotherapy. Most patients (68%) did not receive radiotherapy or PCI. CONCLUSIONS There is an overall alignment of practices reflecting recent clinical guidelines among medical centers managing ES-SCLC across France, and a high prescription rate of immunotherapy in the first-line setting.
Collapse
Affiliation(s)
- Bertrand Mennecier
- Department of Thoracic Oncology, Strasbourg University Hospital, Strasbourg, France.
| | - Jonathan Khalifa
- Department of Radiation Oncology, Claudius Regaud Institute, Cancer University Institute of Toulouse Oncopole, Toulouse, France
| | - Renaud Descourt
- Department of Medical Oncology, Augustin-Morvan Hospital, Brest University Hospital, Brest, France
| | - Laurent Greillier
- Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Multidisciplinary Oncology and Therapeutic Innovations, Marseille, France
| | - Charles Naltet
- Department of Thoracic Oncology & CIC, Paris Saint Joseph Hospital, 1425/CLIP2 Paris-Nord, Paris, France
| | - Lionel Falchero
- Department of Pulmonology and Thoracic Oncology, North West Hospital of Villefranche, Villefranche, France
| |
Collapse
|
11
|
Xie J, Xu K, Cai Z, Chen M, Jiang Y, Ye J, Lin X, Lv T, Zhan P. Efficacy and safety of first-line PD-L1/PD-1 inhibitors in limited-stage small cell lung cancer: a multicenter propensity score matched retrospective study. Transl Lung Cancer Res 2024; 13:526-539. [PMID: 38601454 PMCID: PMC11002504 DOI: 10.21037/tlcr-24-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Background The prognosis of small cell lung cancer (SCLC) patients is poor, and the standard first-line treatment for limited-stage small cell lung cancer (LS-SCLC) is still chemotherapy and thoracic radiotherapy. The primary objectives of our study were to confirm the superior efficacy of first-line immune checkpoint inhibitors (ICIs) plus etoposide and platinum (EP) for LS-SCLC and find crucial biomarkers. Methods We analyzed LS-SCLC patients from three medical centers, employing propensity score matching for group comparability. Survival outcomes were estimated by Kaplan-Meier and Cox regression analyses. Additionally, we conducted univariate and multivariate analyses to investigate potential predictive factors. Results Among 150 patients in our study, we successfully matched 41 pairs. The median overall survival (OS) was 29.5 months in the EP + ICIs group and 20.0 months in the EP group {hazard ratio (HR) =0.64 [95% confidence interval (CI): 0.41-1.02], P=0.059}. The median progression-free survival (PFS) was significantly extended in the EP + ICIs group (14.6 months), compared to the EP group (8.6 months) [HR =0.42 (95% CI: 0.28-0.63), P<0.001]. After matching, patients receiving chemo-immunotherapy had a median OS of 36.1 months, significantly surpassing those receiving chemotherapy alone (19.0 months) [HR =0.51 (95% CI: 0.28-0.93), P=0.02]. And the patients in the EP + ICIs group also had longer PFS after matching [HR =0.42 (95% CI: 0.25-0.71), P=0.001]. No significant difference in the objective response rate (ORR) and treatment-related adverse events (trAEs) between the two groups was found (ORR: EP: 81.0%, EP + ICIs: 90.0%, P=0.14; trAEs: EP: grade 1-2, 49.3%; grade 3-4, 42.5%; EP + ICIs: grade 1-2, 40.0%; grade 3-4, 49.1%, P=0.62). The multivariate analysis presented that the history of immunotherapy [EP + PD-1 inhibitors: HR =0.33 (95% CI: 0.17-0.62), P=0.001; EP + PD-L1 inhibitors: HR =0.18 (95% CI: 0.06-0.60), P=0.005] and baseline lung immune prognostic index (LIPI) [intermediate: HR =2.22 (95% CI: 1.20-4.13), P=0.01; poor: HR =2.03 (95% CI: 0.71-5.77), P=0.18] were independent prognostic factors for PFS among all LS-SCLC cases. However, no independent prognostic factor was identified for OS. Conclusions Our real-world data showed promising clinical efficacy and tolerable safety of first-line programmed cell death protein 1 (PD-1) inhibitors or programmed cell death ligand 1 (PD-L1) inhibitors in cases with LS-SCLC. Additionally, LIPI may serve as a valuable prognostic factor.
Collapse
Affiliation(s)
- Jingyuan Xie
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zijing Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Mo Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuxin Jiang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinjun Ye
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Domvri K, Yaremenko AV, Apostolopoulos A, Petanidis S, Karachrysafi S, Pastelli N, Papamitsou T, Papaemmanouil S, Lampaki S, Porpodis K. Expression patterns and clinical implications of PDL1 and DLL3 biomarkers in small cell lung cancer retrospectively studied: Insights for therapeutic strategies and survival prediction. Heliyon 2024; 10:e27208. [PMID: 38468968 PMCID: PMC10926129 DOI: 10.1016/j.heliyon.2024.e27208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths globally, includes small cell lung cancer (SCLC), characterized by its aggressive nature and advanced disease at diagnosis. However, the identification of reliable biomarkers for SCLC has proven challenging, as no consistent predictive biomarker has been established. Nonetheless, certain tumor-associated antigens, including programmed death-ligand 1 (PDL1) and Delta-Like Ligand 3 (DLL3), show promise for targeted antibody-based immunotherapy. To ensure optimal patient selection, it remains crucial to comprehend the relationship between PDL1 and DLL3 expression and clinicopathological characteristics in SCLC. In this study, we investigated the expression patterns of PDL1 and DLL3 biomarkers in endobronchial samples from 44 SCLC patients, examining their association with clinical characteristics and survival. High PDL1 expression (>1%) was observed in 14% of patients, while the majority the SCLC patients (73%) exhibited high DLL3 expression (>75%). Notably, we found a positive correlation between high PDL1 expression (>1%) and overall survival. However, we did not observe any significant differences in the biomarkers expression concerning age, sex, disease status, smoking status, or distant metastases. Further subgroup analysis revealed that a high co-expression of both PDL1 (>1%) and DLL3 (100%) antigens was associated with improved overall survival. This suggests that SCLC expressing PDL1 and DLL3 antigens may exhibit increased sensitivity to therapy, indicating their potential as therapeutic targets. Thus, our findings provide novel insights into the simultaneous evaluation of PDL1 and DLL3 biomarkers in SCLC patients. These insights have significant clinical implications for therapeutic strategies, survival prediction, and development of combination immunotherapies.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexey V. Yaremenko
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Apostolopoulos
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoleta Pastelli
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Styliani Papaemmanouil
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Lampaki
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Vocino Trucco G, Righi L, Volante M, Papotti M. Updates on lung neuroendocrine neoplasm classification. Histopathology 2024; 84:67-85. [PMID: 37794655 DOI: 10.1111/his.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Lung neuroendocrine neoplasms (NENs) are a heterogeneous group of pulmonary neoplasms showing different morphological patterns and clinical and biological characteristics. The World Health Organisation (WHO) classification of lung NENs has been recently updated as part of the broader attempt to uniform the classification of NENs. This much-needed update has come at a time when insights from seminal molecular characterisation studies revolutionised our understanding of the biological and pathological architecture of lung NENs, paving the way for the development of novel diagnostic techniques, prognostic factors and therapeutic approaches. In this challenging and rapidly evolving landscape, the relevance of the 2021 WHO classification has been recently questioned, particularly in terms of its morphology-orientated approach and its prognostic implications. Here, we provide a state-of-the-art review on the contemporary understanding of pulmonary NEN morphology and the potential contribution of artificial intelligence, the advances in NEN molecular profiling with their impact on the classification system and, finally, the key current and upcoming prognostic factors.
Collapse
Affiliation(s)
| | - Luisella Righi
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Zheng Z, Liu J, Ma J, Kang R, Liu Z, Yu J. Advances in new targets for immunotherapy of small cell lung cancer. Thorac Cancer 2024; 15:3-14. [PMID: 38093497 PMCID: PMC10761621 DOI: 10.1111/1759-7714.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024] Open
Abstract
Small cell lung cancer (SCLC) is one of the highly aggressive malignancies characterized by rapid growth and early metastasis, but treatment options are limited. For SCLC, carboplatin or cisplatin in combination with etoposide chemotherapy has been considered the only standard of care, but the standard first-line treatment only results in 10-month survival. The majority of patients relapse within a few weeks to months after treatment, despite the relatively sensitive response to chemotherapy. Over the past decade, immunotherapy has made significant progress in the treatment of SCLC patients. However, there have been limited improvements in survival rates for SCLC patients with the current immune checkpoint inhibitors PD-1/PD-L1 and CTLA-4. In the face of high recurrence rates, small beneficiary populations, and low survival benefits, the exploration of new targets for key molecules and signals in SCLC and the development of drugs with novel mechanisms may provide fresh hope for immunotherapy in SCLC. Therefore, the aim of this review was to explore four new targets, DLL3, TIGIT, LAG-3, and GD2, which may play a role in the immunotherapy of SCLC to find useful clues and strategies to improve the outcome for SCLC patients.
Collapse
Affiliation(s)
- Zitong Zheng
- Department of OncologyBinzhou Medical University HospitalBinzhouP.R. China
| | - Juanjuan Liu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Junling Ma
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Runting Kang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Zhen Liu
- Department of Graduate Work OfficeBinzhou Medical University HospitalBinzhouP.R. China
| | - Jiangyong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| |
Collapse
|
15
|
Chai BS, Ingledew PA. Assessment of Lung Cancer YouTube Videos for Patient Education. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2023; 38:1760-1766. [PMID: 37434088 DOI: 10.1007/s13187-023-02332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 07/13/2023]
Abstract
The internet is essential for obtaining information about lung cancer, which is the leading contributor to global cancer deaths. YouTube is a video-streaming platform that is popular among health consumers; however, the reliability of videos is variable, and few studies have evaluated their role in lung cancer education. This study uses a systematic approach to assess the characteristics, reliability and use of best practices of lung cancer YouTube videos for patient education. Using the search term "lung cancer," the first 50 YouTube videos were identified after applying exclusion criteria and removing duplicates. Two reviewers used a video assessment tool to evaluate 10 videos with minimal discrepancies. The remaining 40 videos were evaluated by one reviewer following a design based research approach. Under half the videos were published within 3 years. Mean video length was 6 min and 12 s. Video publishers were commonly from the USA (70%); were affiliated with a health care facility/ organization (30%), non-profit (26%) or commercial organization (30%); had a physician presenter (46%); were targeted towards patients (68%); and had subtitles (96%). Seventy four percent of videos supported optimal learning by including effective audio and visual channels. Lung cancer epidemiology, risk factors, and definitions (nature of the disease and classification) were among the most common topics covered. Prognostic and diagnostic information was covered less than expected. The reliability of the videos (measured by Modified DISCERN score) varied by presenter type; however, these results should be interpreted cautiously due to the absence of gold standard tools. This study encourages those producing health education videos to continue following best practices for video learning and provides strategies for healthcare providers and patients to support patient education.
Collapse
Affiliation(s)
- Brandon S Chai
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Paris-Ann Ingledew
- Department of Surgery, Division of Radiation Oncology, University of British Columbia, Faculty of Medicine, Vancouver, Canada.
- Department of Radiation Oncology, BC Cancer-Vancouver, Vancouver, Canada.
| |
Collapse
|
16
|
Thorlacius‐Ussing J, Kristensen SR, Karsdal MA, Willumsen N, Pedersen S. Preliminary investigation of elevated collagen and blood-clotting markers as potential noninvasive biomarkers for small cell lung cancer. Thorac Cancer 2023; 14:2830-2838. [PMID: 37596821 PMCID: PMC10542464 DOI: 10.1111/1759-7714.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is highly aggressive with limited therapeutic options and a poor prognosis. Moreover, noninvasive biomarker tools for detecting disease and monitoring treatment response are lacking. To address this, we evaluated serum biomarkers of extracellular matrix proteins not previously explored in SCLC. METHODS We measured biomarkers in the serum of 16 patients with SCLC before and after chemotherapy as well as in the serum of 11 healthy individuals. RESULTS Our findings demonstrated that SCLC serum had higher levels of collagen type I degradation, collagen type III formation, and collagen type XI formation than healthy controls. In addition, we observed higher levels of type XIX and XXII collagens, fibrinogen, and von Willebrand factor A formation in SCLC serum. The formation of type I collagen did not exhibit any discernible variation. However, we observed a decrease in the degradation of type I collagen following chemotherapy. CONCLUSION Overall, our findings revealed elevated levels of collagen and blood-clotting markers in the serum of SCLC patients, indicating the potential of ECM proteins as noninvasive biomarkers for SCLC.
Collapse
Affiliation(s)
| | - Søren Risom Kristensen
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
| | | | | | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
17
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
18
|
Krpina K, Vranić S, Tomić K, Samaržija M, Batičić L. Small Cell Lung Carcinoma: Current Diagnosis, Biomarkers, and Treatment Options with Future Perspectives. Biomedicines 2023; 11:1982. [PMID: 37509621 PMCID: PMC10377361 DOI: 10.3390/biomedicines11071982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation, early dissemination, acquired therapy resistance, and poor prognosis. Early diagnosis of SCLC is crucial since most patients present with advanced/metastatic disease, limiting the potential for curative treatment. While SCLC exhibits initial responsiveness to chemotherapy and radiotherapy, treatment resistance commonly emerges, leading to a five-year overall survival rate of up to 10%. New effective biomarkers, early detection, and advancements in therapeutic strategies are crucial for improving survival rates and reducing the impact of this devastating disease. This review aims to comprehensively summarize current knowledge on diagnostic options, well-known and emerging biomarkers, and SCLC treatment strategies and discuss future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Kristina Krpina
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Krešimir Tomić
- Department of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
19
|
Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JCH, Bailis JM, Bebb G, Goldrick A, Umejiego J, Paz-Ares L. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol 2023; 16:66. [PMID: 37355629 PMCID: PMC10290806 DOI: 10.1186/s13045-023-01464-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to standard-of-care chemo-immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. Current treatment options are limited, with no therapies specifically approved as third-line or beyond. Delta-like ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface of SCLC cells with minimal to no expression on normal cells. Several DLL3-targeted therapies are being developed for the treatment of SCLC and other neuroendocrine carcinomas, including antibody-drug conjugates (ADCs), T-cell engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience with rovalpituzumab tesirine (Rova-T), a DLL3-targeting ADC, the development of which was halted due to a lack of efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3-targeting agents that are currently in development, including the TCE molecules-tarlatamab (formerly known as AMG 757), BI 764532, and HPN328-and the CAR T-cell therapy AMG 119. We conclude with a discussion of the future challenges and opportunities for DLL3-targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease progression, and the potential of rational combinatorial approaches that can enhance efficacy.
Collapse
Affiliation(s)
- Charles M Rudin
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Melissa L Johnson
- Department of Medical Oncology, Sarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Fiona Blackhall
- Department of Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Julie M Bailis
- Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | - Gwyn Bebb
- Oncology TA-US, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| |
Collapse
|
20
|
Deng J, Peng C, Hou L, Wu Y, Liu W, Fang G, Jiang H, Qin S, Yang F, Huang G, Gou Y. Dithiocarbazate-copper complex loaded thermosensitive hydrogel for lung cancer therapy via tumor in situ sustained-release. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Pluronic F127 thermosensitive hydrogels containing copper complex 3 were constructed, which could delay A549 tumor xenograft growth effectively with lower systemic toxicity.
Collapse
Affiliation(s)
- JunGang Deng
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Chang Peng
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
- State Key Laboratory of Drug Research and, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - LiXia Hou
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - YouRu Wu
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Wei Liu
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - GuiHua Fang
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - HaoWen Jiang
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - ShanFu Qin
- Hechi University, Hechi 546300, Guangxi, China
| | - Feng Yang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - GuoJin Huang
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yi Gou
- The Laboratory of Respiratory Disease, Guilin Medical University, Guilin 541001, Guangxi, China
| |
Collapse
|