1
|
Jaiswal SK, Fedkenheuer K, Khamar R, Tan H, Gotea V, Raj S, Fedkenheuer M, Elkahloun A, Zhao M, Jenkins LM, Annunziata CM, Elnitski L. The Megacomplex protects ER-alpha from degradation by Fulvestrant in epithelial ovarian cancer. Cancer Lett 2025; 608:217129. [PMID: 39048045 DOI: 10.1016/j.canlet.2024.217129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Ovarian cancer, a significant contributor to cancer-related mortality, exhibits limited responsiveness to hormonal therapies targeting the estrogen receptor (ERα). This study aimed to elucidate the mechanisms behind ERα resistance to the therapeutic drug Fulvestrant (ICI182780 or ICI). Notably, compared to the cytoplasmic version, nuclear ERα was minimally degraded by ICI, suggesting a mechanism for drug resistance via the protective confines of the nuclear substructures. Of these substructures, we identified a 1.3 MDa Megacomplex comprising transcription factors ERα, FOXA1, and PITX1 using size exclusion chromatography (SEC) in the ovarian cancer cell line, PEO4. ChIP-seq revealed these factors colocalized at 6775 genomic positions representing sites of Megacomplex formation. Megacomplex ERα exhibited increased resistance to degradation by ICI compared to cytoplasmic and nuclear ERα. A small molecule inhibitor of active chromatin and super-enhancers, JQ1, in combination with ICI significantly enhanced ERα degradation from Megacomplex as revealed by SEC and ChIP-seq. Interestingly, this combination degraded both the cytoplasmic as well as nuclear ERα. Pathway enrichment analysis showed parallel results for RNA-seq gene sets following Estradiol, ICI, or ICI plus JQ1 treatments as those defined by Megacomplex binding identified through ChIP-seq. Furthermore, similar pathway enrichments were confirmed in mass-spec analysis of the Megacomplex macromolecule fractions after modulation by Estradiol or ICI. These findings implicate Megacomplex in ERα-driven ovarian cancer chromatin regulation. This combined treatment strategy exhibited superior inhibition of cell proliferation and viability. Therefore, by uncovering ERα's resistance within the Megacomplex, the combined ICI plus JQ1 treatment elucidates a novel drug treatment vulnerability.
Collapse
Affiliation(s)
- Sushil Kumar Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Ronak Khamar
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Sonam Raj
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Fedkenheuer
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abdel Elkahloun
- Microarrays and Single-Cell Genomics Core, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Ming Zhao
- Proteins and Chemistry Core, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA
| | - Lisa M Jenkins
- Mass Spectrometry Resource, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Dailey GP, Rabiola CA, Lei G, Wei J, Yang XY, Wang T, Liu CX, Gajda M, Hobeika AC, Summers A, Marek RD, Morse MA, Lyerly HK, Crosby EJ, Hartman ZC. Vaccines targeting ESR1 activating mutations elicit anti-tumor immune responses and suppress estrogen signaling in therapy resistant ER+ breast cancer. Hum Vaccin Immunother 2024; 20:2309693. [PMID: 38330990 PMCID: PMC10857653 DOI: 10.1080/21645515.2024.2309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
ER+ breast cancers (BC) are characterized by the elevated expression and signaling of estrogen receptor alpha (ESR1), which renders them sensitive to anti-endocrine therapy. While these therapies are clinically effective, prolonged treatment inevitably results in therapeutic resistance, which can occur through the emergence of gain-of-function mutations in ESR1. The central importance of ESR1 and development of mutated forms of ESR1 suggest that vaccines targeting these proteins could potentially be effective in preventing or treating endocrine resistance. To explore the potential of this approach, we developed several recombinant vaccines encoding different mutant forms of ESR1 (ESR1mut) and validated their ability to elicit ESR1-specific T cell responses. We then developed novel ESR1mut-expressing murine mammary cancer models to test the anti-tumor potential of ESR1mut vaccines. We found that these vaccines could suppress tumor growth, ESR1mut expression and estrogen signaling in vivo. To illustrate the applicability of these findings, we utilize HPLC to demonstrate the presentation of ESR1 and ESR1mut peptides on human ER+ BC cell MHC complexes. We then show the presence of human T cells reactive to ESR1mut epitopes in an ER+ BC patient. These findings support the development of ESR1mut vaccines, which we are testing in a Phase I clinical trial.
Collapse
Affiliation(s)
- Gabrielle P. Dailey
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | | | - Gangjun Lei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Xiao-Yi Yang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Tao Wang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Cong-Xiao Liu
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Melissa Gajda
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Amy C. Hobeika
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Amanda Summers
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Robert D. Marek
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | | | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Erika J. Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Ottenbourgs T, Van Nieuwenhuysen E. Novel Endocrine Therapeutic Opportunities for Estrogen Receptor-Positive Ovarian Cancer-What Can We Learn from Breast Cancer? Cancers (Basel) 2024; 16:1862. [PMID: 38791941 PMCID: PMC11119209 DOI: 10.3390/cancers16101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare ovarian malignancy primarily affecting younger women and is characterized by an indolent growth pattern. It exhibits indolent growth and high estrogen/progesterone receptor expression, suggesting potential responsiveness to endocrine therapy. However, treatment efficacy remains limited due to the development of endocrine resistance. The mechanisms of resistance, whether primary or acquired, are still largely unknown and present a significant hurdle in achieving favorable treatment outcomes with endocrine therapy in these patients. In estrogen receptor-positive breast cancer, mechanisms of endocrine resistance have been largely explored and novel treatment strategies to overcome resistance have emerged. Considering the shared estrogen receptor positivity in LGSOC and breast cancer, we wanted to explore whether there are any parallel mechanisms of resistance and whether we can extend endocrine breast cancer treatments to LGSOC. This review aims to highlight the underlying molecular mechanisms possibly driving endocrine resistance in ovarian cancer, while also exploring the available therapeutic opportunities to overcome this resistance. By unraveling the potential pathways involved and examining emerging strategies, this review explores valuable insights for advancing treatment options and improving patient outcomes in LGSOC, which has limited therapeutic options available.
Collapse
Affiliation(s)
- Tine Ottenbourgs
- Gynaecological Oncology Laboratory, KU Leuven, Leuven Cancer Institute, 3000 Leuven, Belgium;
| | - Els Van Nieuwenhuysen
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, BGOG and Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Zhang J, Qi C, Li H, Ding C, Wang L, Wu H, Dai W, Wang C. Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification. Medicine (Baltimore) 2023; 102:e36656. [PMID: 38134066 PMCID: PMC10735072 DOI: 10.1097/md.0000000000036656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The mortality rate of ovarian cancer is the highest among gynecological cancers, posing a serious threat to women health and life. Scutellaria barbata D. Don (SBD) can effectively treat ovarian cancer. However, its mechanism of action is unclear. The aim of this study was to elucidate the mechanism of SBD in the treatment of ovarian cancer using network pharmacology, and to verify the experimental results using human ovarian cancer SKOV3 cells. The Herb and Disease Gene databases were searched to identify common targets of SBD and ovarian cancer. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-Protein Interaction (PPI) network analyses were performed to identify the potential molecular mechanisms behind SBD. Finally, the molecular docking and main possible pathways were verified by experimental studies. Cell proliferation, the mRNA expression level of key genes and signaling pathway were all investigated and evaluated in vitro. A total of 29 bioactive ingredients and 137 common targets in SBD were found to inhibit ovarian cancer development. The active ingredients identified include quercetin, luteolin, and wogonin. Analysis of the PPI network showed that AKT1, VEGFA, JUN, TNF, and Caspase-3 shared centrality among all target genes. The results of the KEGG pathway analysis indicated that the cancer pathway, PI3K-Akt signaling pathway, and MAPK signaling pathways mediated the effects of SBD against ovarian cancer progression. Cell experiments showed that quercetin, luteolin, and wogonin inhibited the proliferation and clone formation of SKOV3 cells and regulated mRNA expression of 5 key genes by inhibiting PI3K/Akt signaling pathway. Our results demonstrate that SBD exerted anti-ovarian cancer effects through its key components quercetin, luteolin and wogonin. Mechanistically, its anti-cancer effects were mediated by inhibition of the PI3K/Akt signaling pathways. Therefore, SBD might be a candidate drug for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Libo Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjin Wu
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Dai
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenglong Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Stergiopoulou D, Smilkou S, Georgoulias V, Kaklamanis L, Lianidou E, Markou A. Development and Validation of a Novel Dual-Drop-off ddPCR Assay for the Simultaneous Detection of Ten Hotspots PIK3CA Mutations. Anal Chem 2023; 95:14068-14076. [PMID: 37681347 DOI: 10.1021/acs.analchem.3c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide. Approximately 40% of patients with hormone receptor-positive, human epidermal growth factor receptor-2-negative breast cancer have activating mutations in the PIK3CA gene. We developed a highly sensitive, specific, cost-effective, and reproducible dual-drop-off droplet digital polymerase chain reaction (PCR) assay for the simultaneous detection of ten hotspots of PIK3CA mutations in plasma cell-free (cf) DNA. We first evaluated the analytical specificity, sensitivity, limit of blank, repeatability, and reproducibility of the assay, which simultaneously detects seven mutations in exon9 and three in exon20. We further applied this assay in 11 gDNA and 18 plasma cfDNA samples from healthy donors and 35 plasma cfDNA samples from metastatic breast cancer patients. The assay is highly sensitive, specific, and applicable for clinical samples containing at least 1-5% mutant DNA. We detected PIK3CA mutations in 9/35(26%) plasma cfDNA samples in exon 9 and in 9/35(26%) in exon 20. Direct comparison of the developed assay with amplification refractory mutation system-based PCR (using plasma samples) and with the Food and Drug Administration-approved cobas PIK3CA mutation assay (using formalin fixed paraffin embedded samples) showed high concordance of our developed assay with the cobas PIK3CA assay. The developed assay is cost-effective and can reliably and simultaneously detect ten hotspot PIK3CA mutations in plasma cfDNA. The clinical performance of the assay will be further evaluated in liquid biopsy samples.
Collapse
Affiliation(s)
- Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Panepistimiopolis, Ilissia, Athens, Greece
| | - Stavroula Smilkou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Panepistimiopolis, Ilissia, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital, 264 Mesogion Avenue, 15562 Cholargos, Athens, Greece
| | - Loukas Kaklamanis
- Department of Pathology, Onassis Cardiac Surgery Center, 356 Leof. Andrea Siggrou, 176 74 Kallithea, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Panepistimiopolis, Ilissia, Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Panepistimiopolis, Ilissia, Athens, Greece
| |
Collapse
|