1
|
Fithroni AB, Inoue H, Zhou S, Hakim TFN, Tada T, Suzuki M, Sakurai Y, Ishimoto M, Yamada N, Sauriasari R, Sauerwein WAG, Watanabe K, Ohtsuki T, Matsuura E. Novel Drug Delivery Particles Can Provide Dual Effects on Cancer "Theranostics" in Boron Neutron Capture Therapy. Cells 2025; 14:60. [PMID: 39791761 PMCID: PMC11719788 DOI: 10.3390/cells14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., "theranostics".
Collapse
Affiliation(s)
- Abdul Basith Fithroni
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Haruki Inoue
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Shengli Zhou
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Taufik Fatwa Nur Hakim
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Takashi Tada
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (M.S.); (Y.S.)
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (M.S.); (Y.S.)
| | | | - Naoyuki Yamada
- Nihon Fukushi Fuiin Holding, Co., Ltd., Fukushima 979-0513, Japan;
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
| | - Wolfgang A. G. Sauerwein
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, Klinik für Strahlentherapie, 45122 Essen, Germany;
| | - Kazunori Watanabe
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Takashi Ohtsuki
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Eiji Matsuura
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
- Collaborative Research Center for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Neutron Therapy Research Center (NTRC), Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
2
|
Tsunoi Y, Kawauchi S, Yamada N, Araki K, Tsuda H, Sato S. Transvascular delivery of talaporfin sodium to subcutaneous tumors in mice by nanosecond pulsed laser-induced photomechanical waves. Photodiagnosis Photodyn Ther 2023; 44:103861. [PMID: 37879425 DOI: 10.1016/j.pdpdt.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND We previously developed a site-specific transvascular drug delivery system (DDS) based on photomechanical waves (PMWs) or laser-induced stress/shock waves (LISWs). In this study, we investigated the validity of this method to deliver a clinical photosensitizer, talaporfin sodium (TS), to subcutaneous tumors in mice and to enhance the efficacy of photodynamic therapy (PDT). METHODS TS solution (2.5 mg/kg) was intravenously injected into mice. Immediately thereafter, PMWs were applied to the tumor by irradiating a laser target with a Q-switched ruby laser pulse (0.8 J/cm2). Five hours after TS administration, some tumors were excised to evaluate the depth distribution of the delivered TS under a fluorescence microscope. Other tumors were subjected to PDT by irradiating the tissues with a 665 nm continuous-wave laser diode (75 mW/cm2, 667 s) at this timepoint. The effects of PDT were evaluated on the basis of the two primary therapeutic mechanisms of TS-mediated PDT: i) damage to tumor cells and ii) damage to endothelial cells of tumor vessels, i.e., the vascular shutdown effect on tumors. RESULTS PMW application significantly increased the accumulation of TS in the tumor parenchyma but not in the tumor vessel walls; the endothelial cell junctions of tumor vessels should be the route of TS delivery enhanced by PMWs. Thus, as a result of PMW application followed by PDT, while the vascular shutdown effect on the tumors was not enhanced, direct damage to the tumor cells was increased, resulting in significant tumor growth retardation without body weight loss for 7 days after treatment.
Collapse
Affiliation(s)
- Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Naoki Yamada
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Koji Araki
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
3
|
Zhang G, Dong M, Yao X, Xia Y, Yu H, Zhou Y, Lian C, Zhang Y, Cui Y. Advancing breast cancer diagnosis with a near-infrared fluorescence imaging smart sensor for estrogen/progesterone receptor detection. Sci Rep 2023; 13:21086. [PMID: 38030755 PMCID: PMC10687265 DOI: 10.1038/s41598-023-48556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
Molecular-genetic imaging has greatly advanced clinical diagnosis and prognosis monitoring. However, the specific visualization of intracellular proteins such as estrogen receptor (ER) and progesterone receptor (PR) remains an elusive goal. Here, we highlight a novel method for selectively detecting ER/PR positive tumors using genetically engineered responsive elements. Our study demonstrates that the double responsive elements of ER/PR exhibit the most sensitivity to the steroid receptors in breast cancers. By utilizing a cationic polymer vector, we constructed a responsive element-fluorescence protein system that can selectively image ER/PR positive breast cancers in murine models under a near-infrared laser. This non-invasive imaging achieved high-resolution detection without death or serious anaphylactic activity in the animals. Our findings suggest that the reporter system consisting of steroid receptor response elements and near-infrared proteins provides a practical system for identifying biomarkers and advancing cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xiulei Yao
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Yuke Xia
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Han Yu
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Yu Zhou
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Chao Lian
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China
| | - Yunlei Zhang
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China.
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211100, China.
| | - Yiyao Cui
- Department of Thyroid and Breast Surgery, Department of Ultrasound, Central Laboratory, Translational Medicine Research Center, The Affiliated JiangNing Hospital of NanJing Medical University, Nanjing, 211100, China.
| |
Collapse
|
4
|
Tian H, Shang H, Chen Y, Wu B, Wang C, Wang X, Cheng W. Sonosensitizer Nanoplatforms Augmented Sonodynamic Therapy-Sensitizing Shikonin-Induced Necroptosis Against Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7079-7092. [PMID: 38050474 PMCID: PMC10693983 DOI: 10.2147/ijn.s435104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Background Apoptosis resistance of hepatocellular carcinoma (HCC) often leads to treatment failure. Nonetheless, overcoming the resistance of HCC to apoptosis by inducing necroptosis of tumor cells to bypass the apoptotic pathway may be a promising treatment strategy. Sonodynamic therapy (SDT) has broad prospects in disease treatment because of its noninvasive characteristic and spatiotemporal control. The combination of SDT and shikonin in the treatment of HCC is expected to be a new tumor treatment method that can overcome apoptosis resistance. Methods In this study, the antitumor effect was evaluated using normal liver cell line WRL68, HCC cell line HepG2 and HepG2 xenograft mouse models. Indocyanine green (ICG) was loaded on nanobubbles (NBs) to construct ICG-loaded nanobubbles (ICG-NBs). Combined sonosensitizer nanoplatforms with ultrasound (US) to achieve efficient SDT, the combination of SDT and shikonin in treating HCC can activate shikonin-induced necroptosis. As a result, tumor cells that produced apoptosis resistance were destroyed by necroptosis. Results The results indicated a successful preparation of ICG-NBs with a uniform particle size of 273.0 ± 118.9 nm spherical structures. ICG-NB-mediated SDT, in combination with shikonin treatment, inhibited the viability, invasion, and migration of tumor cells. SDT + shikonin treatment group caused a substantial increase in necroptotic cells. The increased degree of tumor necrosis and the upregulated expression of receptor-interacting protein 3 kinase were observed in vivo studies, which indicated that the antitumor effect was accompanied by enhanced necroptosis in the SDT + shikonin treatment group. Conclusion ICG-NB-mediated SDT combined with shikonin inhibits the growth of HCC by increasing the necroptosis of tumor cells. Therefore, this combination therapy is a promising treatment strategy against the specific cancer.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
5
|
Jia J, Wu X, Long G, Yu J, He W, Zhang H, Wang D, Ye Z, Tian J. Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers. Front Immunol 2023; 14:1219785. [PMID: 37860012 PMCID: PMC10582717 DOI: 10.3389/fimmu.2023.1219785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Nanotechnology-enhanced photodynamic therapy (PDT) and immunotherapy are emerging as exciting cancer therapeutic methods with significant potential for improving patient outcomes. By combining these approaches, synergistic effects have been observed in preclinical studies, resulting in enhanced immune responses to cancer and the capacity to conquer the immunosuppressive tumor microenvironment (TME). Despite challenges such as addressing treatment limitations and developing personalized cancer treatment strategies, the integration of nanotechnology-enabled PDT and immunotherapy, along with advanced photosensitizers (PSs), represents an exciting new avenue in cancer treatment. Continued research, development, and collaboration among researchers, clinicians, and regulatory agencies are crucial for further advancements and the successful implementation of these promising therapies, ultimately benefiting cancer patients worldwide.
Collapse
Affiliation(s)
- Jiedong Jia
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xue Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Gongwei Long
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wei He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongwen Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Urology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical, Beijing, China
| |
Collapse
|
6
|
Elafify MS, Itagaki T, Elkasabgy NA, Sayed S, Ito Y, Ueda M. Reversible transformation of peptide assembly between densified-polysarcosine-driven kinetically and helix-orientation-driven thermodynamically stable morphologies. Biomater Sci 2023; 11:6280-6286. [PMID: 37548917 DOI: 10.1039/d3bm00714f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Stimuli-responsive transformable biomaterials development can be manipulated practically by fine-tuning the built-in molecular design of their structural segments. Here, we demonstrate a peptide assembly by the bola-type amphiphilic polypeptide, glycolic acid-polysarcosine (PSar)13-b-(L-Leu-Aib)6-b-PSar13-glycolic acid (S13L12S13), which shows morphological transformations between hydrophilic chain-driven and hydrophobic unit-driven morphologies. The hydrophobic α-helical unit (L-Leu-Aib)6 precisely controls packing in the hydrophobic layer of the assembly and induces tubule formation. The densified, hydrophilic PSar chain on the assembly surface becomes slightly more hydrophobic as the temperature increases above 70 °C, starting to disturb the helix-helix interaction-driven formation of tubules. As a result, the S13L12S13 peptide assembly undergoes a reversible vesicle-nanotube transformation following a time course at room temperature and a heat treatment above 80 °C. Using membrane fluidity analysis with DPH and TMA-DPH and evaluating the environment surrounding the PSar side chain with NMR, we clarify that the vesicle was in a kinetically stable state driven by the dehydrated PSar chain, while the nanotube was in a thermodynamically stable state.
Collapse
Affiliation(s)
- Mohamed S Elafify
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Gamal Abdel El-Nasr Street, Shebin El-Kom, Menoufia 32511, Egypt
| | - Toru Itagaki
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|