1
|
Wang Y, Gao B, Jiao T, Zhang W, Shi H, Jiang H, Li X, Li J, Ge X, Pan K, Li C, Mao G, Lu S. CCL5/CCR5/CYP1A1 pathway prompts liver cancer cells to survive in the combination of targeted and immunological therapies. Cancer Sci 2024; 115:3552-3569. [PMID: 39183447 PMCID: PMC11531955 DOI: 10.1111/cas.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Combination therapy of anti-programmed cell death protein-1 (PD-1) antibodies and tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis for hepatocellular carcinoma (HCC), but many patients still have unsatisfactory outcomes. CD8 T cells are known to exert a pivotal function in the immune response against tumors. Nevertheless, most CD8 T cells in HCC tissues are in a state of exhaustion, losing the cytotoxic activity against malignant cells. Cytokines, mainly secreted by immune cells, play an important role in the occurrence and development of tumors. Here, we demonstrated the changes in exhausted CD8T cells during combination therapy by single-cell RNA sequencing (scRNA-seq) analysis on tumor samples before and after treatment. Combination therapy exerted a substantial impact on the exhausted CD8T cells, particularly in terms of cytokine expression. CCL5 was the most abundantly expressed cytokine in CD8T cells and exhausted CD8T cells, and its expression increased further after treatment. Subsequently, we discovered the CCL5/CCR5/CYP1A1 pathway through RNA sequencing (RNA-seq) on CCL5-stimulated Huh7 cells and verified through a series of experiments that this pathway can mediate the resistance of liver cancer cells to lenvatinib. Tissue experiments showed that after combination therapy, the CCL5/CCR5/CYP1A1 pathway was activated, which can benefit the residual tumor cells to survive treatment. Tumor-bearing mouse experiments demonstrated that bergamottin (BGM), a competitive inhibitor of CYP1A1, can enhance the efficacy of both lenvatinib and combination therapy. Our research revealed one mechanism by which hepatoma cells can survive the combination therapy, providing a theoretical basis for the refined treatment of HCC.
Collapse
Affiliation(s)
- Yafei Wang
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Biao Gao
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Tianyu Jiao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Wenwen Zhang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Huizhong Shi
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Hao Jiang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xuerui Li
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Junfeng Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xinlan Ge
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Ke Pan
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Chonghui Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Guankun Mao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Shichun Lu
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| |
Collapse
|
2
|
Xu B, Sun H, Liu S, Liao L, Song X, Wu Y, Hou Y, Jin W. IFI35 limits antitumor immunity in triple-negative breast cancer via CCL2 secretion. Oncogene 2024; 43:693-702. [PMID: 38216673 PMCID: PMC10907302 DOI: 10.1038/s41388-023-02934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis due to the lack of therapeutic targets. Although immunotherapy brings survival benefits to patients diagnosed with TNBC, it remains limited and treatment resistance is widespread. Here we demonstrate that IFI35 is highly expressed in tumor tissues and can be induced by Interferon-γ in a time-dependent and concentration-dependent manner in breast cancer cells. In xenograft models, we reveal that IFI35 dramatically increases myeloid-derived suppressor cells infiltration in tumors, along with depletion and anergy of CD8+T cells. IFI35 ablation leads to prolonged survival of the mice. Mechanistically, RNA-sequencing reveals that IFI35 promotes CCL2 secretion, resulting in the remodeling of TNBC immune microenvironment. Ablation of IFI35 promotes the infiltration of effector CD8+T cells, and thereby sensitizes TNBC to anti-PD-1 immunotherapy. Our data suggest that IFI35 limits antitumor immunity and may be expected to become a new immunotherapy target in TNBC.
Collapse
Affiliation(s)
- Baojin Xu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Hefen Sun
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Simeng Liu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Song
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Wu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yifeng Hou
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Coperchini F, Greco A, Croce L, Pignatti P, Muzza M, Petrosino E, Teliti M, Magri F, Rotondi M. Canagliflozin reduces thyroid cancer cells migration in vitro by inhibiting CXCL8 and CCL2: An additional anti-tumor effect of the drug. Biomed Pharmacother 2024; 170:115974. [PMID: 38056240 DOI: 10.1016/j.biopha.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Canagliflozin exert anti-cancer effects in several types of cancer including thyroid cancer (TC). However, whether it could modulate chemokines secreted in TC microenvironment is still unknown. The aim of the present study is to evaluate whether Canagliflozin could inhibit pro-tumorigenic chemokines CXCL8 and CCL2 and/or the TC cell migration induced by them. EXPERIMENTAL DESIGN TC cell lines, TPC-1 and 8505C, HUVEC and normal thyroid cells NHT were treated with increasing concentrations of Canagliflozin. Viability was assessed by WST-1 and colony formation/proliferation by cristal violet. Chemokines were measured in cell supernatants by ELISA. mRNAs were evaluated by RT-PCR. TC migration (trans-well) and HUVEC proliferation (cristal violet) were assessed by treating cells with Canagliflozin alone or in combination with CXCL8 or CCL2. RESULTS Canagliflozin reduced TC, HUVEC and NHT cells viability. The ability to form colonies of TC and the HUVEC proliferation (basal and CXCL8 or CCL2-induced) was also inhibited. mRNA and the secretion of CXCL8 was reduced in all cell types. The secretion of CCL2 was reduced by Canagliflozin in all cell types whereas its mRNA levels were reduced only in TPC-1. IL-6 was reduced in all cell types, while CXCL10 increased. More interestingly the CXCL8 and CCL2-induced TC cell migration as well as HUVEC proliferation was inhibited by Canagliflozin in both cell types. CONCLUSION Canagliflozin exerts anti-cancer effects not only by reducing TC viability or colonies formation, but also by modulating two pro-tumorigenic chemokines resulting in reduced TC cells migration. These results expand the spectrum of canagliflozin-promoted anti-cancer effects.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Marina Muzza
- Department of Endocrine and Metabolic Diseases, Endocrine Oncology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elena Petrosino
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy.
| |
Collapse
|
4
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Kim S, Park J, Ho JN, Kim D, Lee S, Jeon JS. 3D vascularized microphysiological system for investigation of tumor-endothelial crosstalk in anti-cancer drug resistance. Biofabrication 2023; 15:045016. [PMID: 37567223 DOI: 10.1088/1758-5090/acef99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Despite the advantages of microfluidic system in drug screening, vascular systems responsible for the transport of drugs and nutrients have been hardly considered in the microfluidic-based chemotherapeutic screening. Considering the physiological characteristics of highly vascularized urinary tumors, we here investigated the chemotherapeutic response of bladder tumor cells using a vascularized tumor on a chip. The microfluidic chip was designed to have open-top region for tumor sample introduction and hydrophilic rail for spontaneous hydrogel patterning, which contributed to the construction of tumor-hydrogel-endothelium interfaces in a spatiotemporal on-demand manner. Utilizing the chip where intravascularly injected cisplatin diffuse across the endothelium and transport into tumor samples, chemotherapeutic responses of cisplatin-resistant or -susceptible bladder tumor cells were evaluated, showing the preservation of cellular drug resistance even within the chip. The open-top structure also enabled the direct harvest of tumor samples and post analysis in terms of secretome and gene expressions. Comparing the cisplatin efficacy of the cisplatin-resistant tumor cells in the presence or absence of endothelium, we found that the proliferation rates of tumor cells were increased in the vasculature-incorporated chip. These have suggested that our vascularized tumor chip allows the establishment of vascular-gel-tumor interfaces in spatiotemporal manners and further enables investigations of chemotherapeutic screening.
Collapse
Affiliation(s)
- Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Joonha Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|