1
|
Tang J, Liu Z, Xie G, Wang C, Jiang Y. POU4F1 enhances lung cancer gemcitabine resistance by regulating METTL3-dependent TWF1 mRNA N6 adenosine methylation. 3 Biotech 2025; 15:7. [PMID: 39676891 PMCID: PMC11638459 DOI: 10.1007/s13205-024-04161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
This study aimed to investigate the role of POU Class 4 Homeobox 1 (POU4F1) in regulating gemcitabine (GEM) resistance in lung cancer cells. The mRNA and protein expressions were assessed using RT-qPCR, western blot, immunofluorescence, and immunohistochemistry. Cell viability and proliferation were assessed by CCK-8 assay and EdU assay. TUNEL staining and flow cytometry were employed to detect cell apoptosis. The m6A modification of TWF1 was detected using MeRIP assay. The interactions between molecules were validated using dual luciferase reporter gene, ChIP, and RIP assays. POU4F1 knockdown inhibited GEM resistance and autophagy in lung cancer cells. Mechanistically, POU4F1 transcriptionally activated methyltransferase-like protein 3 (METTL3) in GEM-resistant cells by binding to the METTL3 promoter. METTL3 promoted the N6-methyladenosine (m6A) modification and expression level of twinfilin-1 (TWF1). Overexpression of METTL3 and TWF1 weakened the effects of POU4F1 knockdown on GEM resistance and autophagy. Moreover, knockdown POU4F1 also enhanced GEM anti-tumor sensitivity in vivo. In conclusion, POU4F1 upregulation promoted GEM resistance in lung cancer cells by promoting autophagy through increasing METTL3-mediated TWF1 m6A modification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04161-w.
Collapse
Affiliation(s)
- Jianfeng Tang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Zhijian Liu
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Guanghui Xie
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Chenbin Wang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Yongjun Jiang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| |
Collapse
|
2
|
Cai M, Li X, Luan X, Zhao P, Sun Q. Exploring m6A methylation in skin Cancer: Insights into molecular mechanisms and treatment. Cell Signal 2024; 124:111420. [PMID: 39304098 DOI: 10.1016/j.cellsig.2024.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
N6-methyladenosine (m6A) is the most common and prevalent internal mRNA modification in eukaryotes. m6A modification is a dynamic and reversible process regulated by methyltransferases, demethylases, and m6A binding proteins. Skin cancers, including melanoma and nonmelanoma skin cancers (NMSCs), are among the most commonly diagnosed cancers worldwide. m6A methylation is involved in the regulation of RNA splicing, translation, degradation, stability, translocation, export, and folding. Aberrant m6A modification participates in the pathophysiological processes of skin cancers and is associated with tumor cell proliferation, invasion, migration, and metastasis during cancer progression. In this review, we provide a comprehensive summary of the biological functions of m6A and the most up-to-date evidence related to m6A RNA modification in skin cancer. We also emphasize the potential clinical applications in the diagnosis and treatment of skin cancers.
Collapse
Affiliation(s)
- Mingjun Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueyu Luan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Pengyuan Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
3
|
Geng R, Ren M, Ma Y, Su W. Mechanism of the KIAA1429/KLF1/PD-L1 Axis in Regulating Immune Escape in Non-small Cell Lung Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01592-3. [PMID: 39499390 DOI: 10.1007/s12013-024-01592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Non-small cell lung cancer (NSCLC), accounting for approximately 80% of lung cancer cases, remains the leading cause of cancer-related mortality. Immune evasion is a critical challenge in NSCLC, contributing to poor treatment outcomes. This study investigates the role of KIAA1429 in immune evasion, aiming to identify novel therapeutic targets and provide a theoretical basis for NSCLC treatment. NSCLC cell lines were cultured to assess the expression of KIAA1429, KLF transcription factor (KLF1), and programmed cell death ligand 1 (PD-L1). Co-culture experiments were conducted with peripheral blood mononuclear cells (PBMCs) to evaluate cytotoxicity, CD8+T cell proportions, and levels of interferon-gamma (IFN-γ)/interleukin (IL)-10/IL-2. Additionally, N6-methyladenosine (m6A) modification in NSCLC cells, m6A enrichment on KLF1, and KLF1 mRNA stability were analyzed. Results showed increased expression of KIAA1429 and KLF1 in NSCLC cells. Knockdown of KIAA1429 inhibited NSCLC cell proliferation, enhanced PBMC cytotoxicity and CD8+T cell activation, increased IFN-γ and IL-2 levels, and decreased IL-10 levels. Mechanistically, KIAA1429 stabilized KLF1 mRNA level through m6A modification, promoting both KLF1 and PD-L1 expression. Overexpression of KLF1 or PD-L1 reversed the immune-modulating effects of KIAA1429 knockdown. In conclusion, KIAA1429 facilitates immune evasion in NSCLC by stabilizing KLF1 mRNA and upregulating PD-L1 expression.
Collapse
Affiliation(s)
- Rui Geng
- Department of Research-oriented Ward, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi, China
| | - Mingmin Ren
- Department of Research-oriented Ward, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi, China
| | - Yuhui Ma
- Department of Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University Science of and Technology, Taiyuan, Shanxi, China
| | - Wen Su
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
5
|
Huang J, Guo J, Jia R. N6-Methyladenosine Methyltransferase Component KIAA1429 Is a Potential Target of Cancer Therapy. Biomolecules 2024; 14:1319. [PMID: 39456252 PMCID: PMC11506059 DOI: 10.3390/biom14101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotes, has a crucial impact on tumorigenesis. KIAA1429 is the key component of the m6A methyltransferase complex, in which KIAA1429 functions as a scaffold to bridge the catalytic core proteins. KIAA1429 is often overexpressed in malignances, associated with patient prognosis, and required for tumorigenesis. KIAA1429 regulates the expression of a number of tumor-associated genes in an m6A -dependent manner, and thus, contributes to cell proliferation, migration, drug resistance, tumor formation and metastasis. This review focuses on recent progress in the understanding of roles and mechanisms of KIAA1429 in cancers, and offers ideas for potential anti-cancer therapeutic methods by targeting KIAA1429.
Collapse
Affiliation(s)
- Junjun Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
| |
Collapse
|
6
|
Wu Y, Luo Y, Yao X, Shi X, Xu Z, Re J, Shi M, Li M, Liu J, He Y, Du X. KIAA1429 increases FOXM1 expression through YTHDF1-mediated m6A modification to promote aerobic glycolysis and tumorigenesis in multiple myeloma. Cell Biol Toxicol 2024; 40:58. [PMID: 39060874 PMCID: PMC11282141 DOI: 10.1007/s10565-024-09904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Multiple myeloma (MM) is a deadly plasma cell malignancy with elusive pathogenesis. N6-methyladenosine (m6A) is critically engaged in hematological malignancies. The function of KIAA1429, the largest component of methyltransferases, is unknown. This study delved into the mechanism of KIAA1429 in MM, hoping to offer novel targets for MM therapy. METHODS Bone marrow samples were attained from 55 MM patients and 15 controls. KIAA1429, YTHDF1, and FOXM1 mRNA levels were detected and their correlation was analyzed. Cell viability, proliferation, cell cycle, and apoptosis were testified. Glycolysis-enhancing genes (HK2, ENO1, and LDHA), lactate production, and glucose uptake were evaluated. The interaction between FOXM1 mRNA and YTHDF1, m6A-modified FOXM1 level, and FOXM1 stability were assayed. A transplantation tumor model was built to confirm the mechanism of KIAA1429. RESULTS KIAA1429 was at high levels in MM patients and MM cells and linked to poor prognoses. KIAA1429 knockdown restrained MM cell viability, and proliferation, arrested G0/G1 phase, and increased apoptosis. KIAA1429 mRNA in plasma cells from MM patients was positively linked with to glycolysis-enhancing genes. The levels of glycolysis-enhancing genes, glucose uptake, and lactate production were repressed after KIAA1429 knockdown, along with reduced FOXM1 levels and stability. YTHDF1 recognized KIAA1429-methylated FOXM1 mRNA and raised FOXM1 stability. Knockdown of YTHDF1 curbed aerobic glycolysis and malignant behaviors in MM cells, which was nullified by FOXM1 overexpression. KIAA1429 knockdown also inhibited tumor growth in animal experiments. CONCLUSION KIAA1429 knockdown reduces FOXM1 expression through YTHDF1-mediated m6A modification, thus inhibiting MM aerobic glycolysis and tumorigenesis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Yi Luo
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, 410007, Hunan, China
| | - Xingchen Yao
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Xiangjun Shi
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Ziyu Xu
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Jie Re
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Ming Shi
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Meng Li
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Junpeng Liu
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Youzhi He
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, 410007, Hunan, China
| | - Xinru Du
- Department of Orthopedics, Beijing Chao-Yang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
7
|
Ren M, Pan H, Zhou X, Yu M, Ji F. KIAA1429 promotes gastric cancer progression by destabilizing RASD1 mRNA in an m 6A-YTHDF2-dependent manner. J Transl Med 2024; 22:584. [PMID: 38902717 PMCID: PMC11191263 DOI: 10.1186/s12967-024-05375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND KIAA1429, a regulatory subunit of the N6-methyladenosine (m6A) methyltransferase complex, has been implicated in the progression of various cancers. However, the role of KIAA1429 in gastric cancer (GC) and its underlying mechanisms remain elusive. This study aimed to investigate the role of KIAA1429 in GC and to elucidate the underlying mechanisms. METHODS The expression patterns and clinical relevance of KIAA1429 in GC were assessed using quantitative real-time PCR (qRT-PCR), Western blotting, immunohistochemistry (IHC), and bioinformatic analysis. In vitro and in vivo loss- and gain-of-function assays, m6A dot blot assays, methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA-seq, MeRIP-qPCR, dual luciferase reporter assays, RNA stability assays, RNA immunoprecipitation (RIP) assays, and RNA pull-down assays were performed to investigate the biological functions and underlying molecular mechanisms of KIAA1429 in GC. RESULTS Both the mRNA and protein expression of KIAA1429 were greater in GC tissues than in normal gastric tissues. High KIAA1429 expression correlated positively with poor prognosis in GC patients. KIAA1429 not only promoted GC cell proliferation, colony formation, G2/M cell cycle transition, migration, and invasion in vitro but also enhanced GC tumor growth and metastasis in vivo. Mechanistically, KIAA1429 increased the m6A level of RASD1 mRNA and enhanced its stability in an m6A-YTHDF2-dependent manner, thereby upregulating its expression. RASD1 knockdown partially rescued the KIAA1429 knockdown-induced impairment of pro‑oncogenic ability in GC cells. The expression levels of KIAA1429 and RASD1 were negatively correlated in GC tissues. CONCLUSIONS KIAA1429 plays a pro‑oncogenic role in GC by downregulating RASD1 expression through destabilizing RASD1 mRNA in an m6A-YTHDF2-dependent manner. KIAA1429 may serve as a prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Mengting Ren
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanghai Pan
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Mosang Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
8
|
Shen X, Zhong J, Yu P, Liu F, Peng H, Chen N. YTHDC1-dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple-negative breast cancer. Cancer Sci 2024; 115:1881-1895. [PMID: 38566554 PMCID: PMC11145146 DOI: 10.1111/cas.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits heightened aggressiveness compared with other breast cancer (BC) subtypes, with earlier relapse, a higher risk of distant metastasis, and a worse prognosis. Transcription factors play a pivotal role in various cancers. Here, we found that factor forkhead box M1 (FOXM1) expression was significantly higher in TNBC than in other BC subtypes and normal tissues. Combining the findings of Gene Ontology (GO) enrichment analysis and a series of experiments, we found that knockdown of the FOXM1 gene attenuated the ability of TNBC cells to proliferate and metastasize both in vivo and in vitro. In addition, Spearman's test showed that FOXM1 significantly correlated with glycolysis-related genes, especially centromere protein A (CENPA) in datasets (GSE76250, GSE76124, GSE206912, and GSE103091). The effect of silencing FOXM1 on the inhibition of CENPA expression, TNBC proliferation, migration, and glycolysis could be recovered by overexpression of CENPA. According to MeRIP, the level of m6A modification on FOMX1 decreased in cells treated with cycloleucine (a m6A inhibitor) compared with that in the control group. The increase in FOXM1 expression caused by YTHDC1 overexpression could be reversed by the m6A inhibitor, which indicated that YTHDC1 enhanced FOXM1 expression depending on m6A modification. Therefore, we concluded that the YTHDC1-m6A modification/FOXM1/CENPA axis plays an important role in TNBC progression and glycolysis.
Collapse
Affiliation(s)
- Xi Shen
- Department of Oncology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianxin Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Pan Yu
- Department of Health ManagementThe Second Hospital Affiliated to Chongqing Medical UniversityChongqingChina
| | - Feng Liu
- Department of Thyroid and Breast SurgeryWuhan Fourth HospitalWuhanChina
| | - Haoran Peng
- Department of Stomatology, Shenzhen HospitalUniversity of Chinese Academy of SciencesShenzhenChina
| | - Nianyong Chen
- Department of Radiation Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Niu L, Li Y, Huang G, Huang W, Fu J, Feng L. FAM120A deficiency improves resistance to cisplatin in gastric cancer by promoting ferroptosis. Commun Biol 2024; 7:399. [PMID: 38565940 PMCID: PMC10987584 DOI: 10.1038/s42003-024-06097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
The occurrence of chemoresistance is an inescapable obstacle affecting the clinical efficacy of cisplatin in gastric cancer (GC). Exploring the regulatory mechanism of cisplatin resistance will help to provide potential effective targets for improving the prognosis of gastric cancer patients. Here, we find that FAM120A is upregulated in GC tissues and higher in cisplatin-resistant GC tissues, and its high expression is positively correlated with the poor outcome of GC patients. Functional studies indicate that FAM120A confers chemoresistance to GC cells by inhibiting ferroptosis. Mechanically, METTL3-induced m6A modification and YTHDC1-induced stability of FAM120A mRNA enhance FAM120A expression. FAM120A inhibits ferroptosis by binding SLC7A11 mRNA and enhancing its stability. FAM120A deficiency enhances cisplatin sensitivity by promoting ferroptosis in vivo. These results reveal the function of FAM120A in chemotherapy tolerance and targeting FAM120A is an effective strategy to alleviate cisplatin resistance in GC.
Collapse
Affiliation(s)
- Liangbo Niu
- Department of Emergency surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yi Li
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guixiang Huang
- Department of Emergency surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Wei Huang
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Jing Fu
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Lu Feng
- Department of Emergency surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
10
|
Chen W, Ye X, Chen Y, Zhao T, Zhou H. M6A methylation of FKFB3 reduced pyroptosis of gastric cancer by NLRP3. Anticancer Drugs 2024; 35:344-357. [PMID: 38241195 DOI: 10.1097/cad.0000000000001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Gastric cancer is a kind of malignant tumor that seriously endangers human life and health. Its incidence rate and mortality rate are among the highest in the global malignant tumors. Therefore, this study explored the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in the progression of gastric cancer and its underlying mechanism. Patients with gastric cancer were collected, and human GC cell lines (stomach gastric carcinoma 7901, stomach gastric carcinoma 823 , human gastric carcinoma cell line 803 and adenocarcinoma gastric stomach) were used in this study. We utilized glucose consumption, cell migration, and ELISA assay kits to investigate the function of GC. To understand its mechanism, we employed quantitative PCR (qPCR), western blot, and m6A methylated RNA immunoprecipitation assay. FKFB3 protein expression levels in patients with gastric cancer were increased. The induction of PFKFB3 mRNA expression levels in patients with gastric cancer or gastric cancer cell lines. Gastric cancer patients with high PFKFB3 expression had a lower survival rate. PFKFB3 high expression possessed the probability of pathological stage, lymph node metastasis or distant metastasis in patients with gastric cancer. PFKFB3 upregulation promoted cancer progression and Warburg effect progression of gastric cancer. PFKFB3 upregulation reduced pyroptosis and suppressed nucleotidebinding domain, leucinerich repeat containing protein 3-induced pyroptosis of gastric cancer. M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability. Taken together, the M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability and reduced pyroptosis in the model of gastric cancer through the Warburg effect. The PFKFB3 gene represents a potential therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wanyuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College
| | - Xiaolin Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University
| | - Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Tongwei Zhao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongying Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Shan Y, Zheng L, Zhang S, Qian B. Abnormal expression of FOXM1 in carcinogenesis of renal cell carcinoma: From experimental findings to clinical applications. Biochem Biophys Res Commun 2024; 692:149251. [PMID: 38056162 DOI: 10.1016/j.bbrc.2023.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Renal cell carcinoma (RCC) is a prevalent malignancy within the genitourinary system. At present, patients with high-grade or advanced RCC continue to have a bleak prognosis. Mounting research have emphasized the significant involvement of Forkhead box M1 (FOXM1) in RCC development and progression. Therefore, it is imperative to consolidate the existing evidence regarding the contributions of FOXM1 to RCC tumorigenesis through a comprehensive review. This study elucidated the essential functions of FOXM1 in promoting RCC growth, invasion, and metastasis by regulating cell cycle progression, DNA repair, angiogenesis, and epithelial-mesenchymal transition (EMT). Also, FOXM1 might serve as a novel diagnostic and prognostic biomarker as well as a therapeutic target for RCC. Clinical findings demonstrated that the expression of FOXM1 was markedly upregulated in RCC samples, while a high level of FOXM1 was found to be associated with a poor overall survival rate of RCC. Furthermore, it is worth noting that FOXM1 may have a significant impact on the resistance of renal cell carcinoma (RCC) to radiotherapy. This observation suggests that inhibiting FOXM1 could be a promising strategy to impede the progression of RCC and enhance its sensitivity to radiotherapy. The present review highlighted the pivotal role of FOXM1 in RCC development. FOXM1 has the capacity to emerge as not only a valuable diagnostic and prognostic tool but also a viable therapeutic option for unresectable RCC.
Collapse
Affiliation(s)
- Yanmei Shan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
12
|
Jiang J, Zhu J, Qiu P, Ni J, Zhu W, Wang X. HNRNPA2B1-mediated m6A modification of FOXM1 promotes drug resistance and inhibits ferroptosis in endometrial cancer via regulation of LCN2. Funct Integr Genomics 2023; 24:3. [PMID: 38091112 DOI: 10.1007/s10142-023-01279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
N6-methyladenosine (m6A) methylation is an extensive posttranscriptional RNA modification, and it is associated with various cellular responses, especially in tumor progression. An m6A "reader"-HNRNPA2B1 has been found oncogenic in multiple malignancies. As a key proliferation-related transcription factor, forkhead box protein M1 (FOXM1) is involved in tumorigenesis. Here, we elucidated the underlying mechanism by which HNRNPA2B1-mediated modification of FOXM1 promotes endometrial cancer (EC). The GSE115810 dataset was used to analyze the upregulated gene mRNA in late-stage EC tissues. The expression levels of HNRNPA2B1, FOXM1, and LCN2 in EC samples were shown by western blotting and qPCR. The interaction among HNRNPA2B1, FOXM1, and LCN2 in EC cells was detected using bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down, RNA decay analysis, and luciferase reporter experiments. Cisplatin (DDP)-resistant EC cells were constructed using HEC-1-A and HEC-1-B cells, named HEC-1-A/DDP and HEC-1-B/DDP, respectively. Proliferation, migration, and invasiveness in treated HEC-1-A/DDP and HEC-1-B/DDP cells were detected by EdU, wound healing, and transwell assays. Ferroptosis-resistant gene expression, MDA level, and ROS level were measured. The m6A modification level in EC tissues was elevated. HNRNPA2B1 and FOXM1 levels were upregulated in EC. HNRNPA2B1 expression was positively related to FOXM1 expression in EC samples, and HNRNPA2B1 bound to the 3'UTR of FOXM1 and stabilized FOXM1 mRNA via m6A modification. FOXM1 positively regulated LCN2 expression in EC cells by binding to the LCN2 promotor. Knockdown of FOXM1 downregulated ferroptosis-resistant gene expression and increased MDA and ROS levels in DDP-resistant EC cells. Rescue assays revealed that LCN2 overexpression eliminated the effects mediated by FOXM1 knockdown on the proliferation, migration, invasiveness, and ferroptosis in DDP-resistant EC cells. In conclusion, HNRNPA2B1-mediated mA modification of FOXM1 facilitates drug resistance and inhibits ferroptosis in EC cells by upregulating LCN2 expression.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Jiamei Zhu
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China.
| | - Ping Qiu
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Jie Ni
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Wei Zhu
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Xinyan Wang
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| |
Collapse
|
13
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
15
|
Chen X, Lu T, Cai Y, Han Y, Ding M, Chu Y, Zhou X, Wang X. KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo-YAP pathway. Cell Mol Biol Lett 2023; 28:32. [PMID: 37076815 PMCID: PMC10114474 DOI: 10.1186/s11658-023-00445-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) has been shown to participate in various essential biological processes by regulating the level of target genes. However, the function of m6A modification mediated by KIAA1429 [alias virus-like m6A methyltransferase-associated protein (VIRMA)] during the progression of diffuse large B-cell lymphoma (DLBCL) remains undefined. METHODS The expression and clinical significance of KIAA1429 were verified by our clinical data. CRISPR/Cas9 mediated KIAA1429 deletion, and CRISPR/dCas9-VP64 for activating endogenous KIAA1429 was used to evaluate its biological function. RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA immunoprecipitation (RIP) assays, luciferase activity assay, RNA stability experiments, and co-immunoprecipitation were performed to investigate the regulatory mechanism of KIAA1429 in DLBCL. Tumor xenograft models were established for in vivo experiments. RESULTS Dysregulated expression of m6A regulators was observed, and a novel predictive model based on m6A score was established in DLBCL. Additionally, elevated KIAA1429 expression was associated with poor prognosis of patients with DLBCL. Knockout of KIAA1429 repressed DLBCL cell proliferation, facilitated cell cycle arrest in the G2/M phase, induced apoptosis in vitro, and inhibited tumor growth in vivo. Furthermore, carbohydrate sulfotransferase 11 (CHST11) was identified as a downstream target of KIAA1429, which mediated m6A modification of CHST11 mRNA and then recruited YTHDF2 for reducing CHST11 stability and expression. Inhibition of CHST11 diminished MOB1B expression, resulting in inactivation of Hippo-YAP signaling, reprogramming the expression of Hippo target genes. CONCLUSIONS Our results revealed a new mechanism by which the Hippo-YAP pathway in DLBCL is inactivated by KIAA1429/YTHDF2-coupled epitranscriptional repression of CHST11, highlighting the potential of KIAA1429 as a novel predictive biomarker and therapeutic target for DLBCL progression.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
16
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|