1
|
Yamada T, Kawamura M, Oie Y, Kozai Y, Okumura M, Nagai N, Yanagi Y, Nimura K, Ishihara S, Naganawa S. The current state and future perspectives of radiotherapy for cervical cancer. J Obstet Gynaecol Res 2024; 50 Suppl 1:84-94. [PMID: 38885951 DOI: 10.1111/jog.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Radiotherapy is an effective treatment method for cervical cancer and is typically administered as external beam radiotherapy followed by intracavitary brachytherapy. In Japan, center shielding is used in external beam radiotherapy to shorten treatment time and reduce the doses delivered to the rectum or bladder. However, it has several challenges, such as uncertainties in calculating the cumulative dose. Recently, external beam radiotherapy has been increasingly performed with intensity-modulated radiotherapy, which reduces doses to the rectum or bladder without center shielding. In highly conformal radiotherapy, uncertainties in treatment delivery, such as inter-fractional anatomical structure movements, affect treatment outcomes; therefore, image-guided radiotherapy is essential for appropriate and safe performance. Regarding intracavitary brachytherapy, the use of magnetic resonance imaging-based image-guided adaptive brachytherapy is becoming increasingly widespread because it allows dose escalation to the tumor and accurately evaluates the dose delivered to the surrounding normal organs. According to current evidence, a minimal dose of D90% of the high-risk clinical target volume is significantly relevant to local control. Further improvements in target coverage have been achieved with combined interstitial and intracavity brachytherapy for massive tumors with extensive parametrical involvement. Introducing artificial intelligence will enable faster and more accurate generation of brachytherapy plans. Charged-particle therapies have biological and dosimetric advantages, and current evidence has proven their effectiveness and safety in cervical cancer treatment. Recently, radiotherapy-related technologies have advanced dramatically. This review provides an overview of technological innovations and future perspectives in radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Takehiro Yamada
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumi Oie
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kozai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Okumura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Nagai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yanagi
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Radiology, Toyota Memorial Hospital, Toyota, Japan
| | - Kenta Nimura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Radiology, Tosei General Hospital, Seto, Japan
| | - Shunichi Ishihara
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Slama Y, Baumont G, Arcambal A, Begue M, Maillot O, Sayah R, Castanet R, Caboche R, Liberati P, Slaoui H, Bouaziz M, Borson O, Nguyen NP, Dutheil F. Retrospective study on the toxicity induced by stereotactic body radiotherapy: overview of the reunion experience on prostate cancer in elderly patients. Front Oncol 2024; 14:1302001. [PMID: 38361775 PMCID: PMC10867626 DOI: 10.3389/fonc.2024.1302001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Prostate cancer is the fourth most commonly diagnosed cancer among men worldwide. Various tools are used to manage disease such as conventional radiotherapy. However, it has been demonstrated that large prostate volumes were often associated with higher rates of genitourinary and gastrointestinal toxicities. Currently, the improvements in radiotherapy technology have led to the development of stereotactic body radiotherapy, which delivers higher and much more accurate radiation doses. In order to complete literature data about short-term outcome and short-term toxic effects of stereotactic body radiotherapy, we aimed to share our experience about gastrointestinal and genitourinary toxicities associated with stereotactic body radiotherapy in prostate cancer in patients over 70 years old. Methods We retrospectively reviewed the medical records of elderly patients with prostate cancer treated between 2021 and 2022. The elderly patients were treated with a non-coplanar robotic stereotactic body radiotherapy platform using real-time tracking of implanted fiducials. The prostate, with or without part of the seminal vesicles, was treated with a total dose of 36.25 Gy delivered in five fractions, each fraction being administered every other day. Results We analyzed a total of 80 elderly patients, comprising 38 low-, 37 intermediate- and 5 high-risk patients. The median follow-up duration was 12 months. We did not observe biochemical/clinical recurrence, distant metastasis, or death. Grade 2 acute genitourinary toxicity was observed in 9 patients (11.25%) and Grade 2 acute gastrointestinal toxicity in 4 patients (5.0%). We did not observe any grade 3 or more acute or late toxicities. Conclusion Over the follow-up period, we noted a low frequency of gastrointestinal and genitourinary toxicities induced by stereotactic body radiotherapy in the context of prostate cancer in elderly patients. Therefore, stereotactic body radiotherapy seems to represent a promising treatment option for elderly patients, with acceptable acute toxicity.
Collapse
Affiliation(s)
- Youssef Slama
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Gilles Baumont
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Angelique Arcambal
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Mickael Begue
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Olivier Maillot
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Rima Sayah
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Romain Castanet
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Raoul Caboche
- Clinique Sainte-Clotilde, Department of Urology, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Pedro Liberati
- Clinique Sainte-Clotilde, Department of Urology, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Hakim Slaoui
- Clinique Sainte-Clotilde, Department of Urology, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Medi Bouaziz
- Clinique Sainte-Clotilde, Department of Urology, Groupe Clinifutur, Saint-Denis, La Réunion, France
| | - Olivier Borson
- Cabinet de Radiologie Les Alizés, Saint-Denis, La Réunion, France
| | - Nam P. Nguyen
- Department of Radiation Oncology, Howard University, College of Medicine, Washington, DC, United States
| | - Fabien Dutheil
- Clinique Sainte-Clotilde, Department of Radiotherapy, Groupe Clinifutur, Saint-Denis, La Réunion, France
| |
Collapse
|
3
|
Mazonakis M, Kachris S, Tolia M, Damilakis J. NTCP Calculations of Five Different Irradiation Techniques for the Treatment of Thymoma. Curr Oncol 2023; 30:7740-7752. [PMID: 37623042 PMCID: PMC10453123 DOI: 10.3390/curroncol30080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
This study provided normal tissue complication probability (NTCP) calculations from photon radiotherapy techniques in eleven patients with thymoma. Five plans were created for each participant using three-dimensional conformal radiotherapy (3D-CRT), five-field intensity modulated radiotherapy (5F-IMRT), seven-field IMRT (7F-IMRT), and volumetric modulated arc therapy with full arcs (FA-VMAT) and partial arcs (PA-VMAT). The target coverage, homogeneity index and conformation number for the planning target volume (PTV) and dosimetric parameters for the organs-at-risk (OARs) were taken from the fifty-five generated plans. The patient-specific NTCP of the lungs, heart and esophagus was calculated with an in-house software tool using differential dose-volume histograms and the equivalent uniform dose model. The PTV dose metrics from 3D-CRT were inferior to those from IMRT and VMAT plans. The dose constraints for the OARs were met in all treatment plans. The NTCP range of the lungs, heart and esophagus was 0.34-0.49%, 0.03-0.06% and 0.08-0.10%, respectively. The NTCPs of the heart for the incidence of peridarditis from IMRT and VMAT were significantly smaller than those from conformal treatment (p < 0.05). The 7F-IMRT was significantly superior to FA-VMAT in reducing the NTCP of the lungs and the risk of pneumonitis (p = 0.001). Similar superiority of 5F-IMRT over PA-VMAT for lung protection was found (p = 0.009). The presented results may be employed in the selection of the appropriate irradiation technique for restricting the complications in the adjacent OARs.
Collapse
Affiliation(s)
- Michalis Mazonakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, 71003 Iraklion, Greece;
| | - Stefanos Kachris
- Department of Radiotherapy and Oncology, University Hospital of Iraklion, 71110 Iraklion, Greece; (S.K.); (M.T.)
| | - Maria Tolia
- Department of Radiotherapy and Oncology, University Hospital of Iraklion, 71110 Iraklion, Greece; (S.K.); (M.T.)
| | - John Damilakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, 71003 Iraklion, Greece;
| |
Collapse
|
4
|
Hou Z, Lin J, Ma Y, Fang H, Wu Y, Chen Z, Lin X, Lu F, Wen S, Yu X, Huang H, Pan Y. Single-cell RNA sequencing revealed subclonal heterogeneity and gene signatures of gemcitabine sensitivity in pancreatic cancer. Front Pharmacol 2023; 14:1193791. [PMID: 37324492 PMCID: PMC10267405 DOI: 10.3389/fphar.2023.1193791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Resistance to gemcitabine is common and critically limits its therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC). Methods: We constructed 17 patient-derived xenograft (PDX) models from PDAC patient samples and identified the most notable responder to gemcitabine by screening the PDX sets in vivo. To analyze tumor evolution and microenvironmental changes pre- and post-chemotherapy, single-cell RNA sequencing (scRNA-seq) was performed. Results: ScRNA-seq revealed that gemcitabine promoted the expansion of subclones associated with drug resistance and recruited macrophages related to tumor progression and metastasis. We further investigated the particular drug-resistant subclone and established a gemcitabine sensitivity gene panel (GSGP) (SLC46A1, PCSK1N, KRT7, CAV2, and LDHA), dividing PDAC patients into two groups to predict the overall survival (OS) in The Cancer Genome Atlas (TCGA) training dataset. The signature was successfully validated in three independent datasets. We also found that 5-GSGP predicted the sensitivity to gemcitabine in PDAC patients in the TCGA training dataset who were treated with gemcitabine. Discussion and conclusion: Our study provides new insight into the natural selection of tumor cell subclones and remodeling of tumor microenvironment (TME) cells induced by gemcitabine. We revealed a specific drug resistance subclone, and based on the characteristics of this subclone, we constructed a GSGP that can robustly predict gemcitabine sensitivity and prognosis in pancreatic cancer, which provides a theoretical basis for individualized clinical treatment.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Ma
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haizhong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhijiang Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Dahbi Z, Fadila K, Vinh-Hung V. Brachytherapy Versus Stereotactic Body Radiotherapy for Cervical Cancer Boost: A Dosimetric Comparison. Cureus 2023; 15:e37235. [PMID: 37038382 PMCID: PMC10082648 DOI: 10.7759/cureus.37235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The standard treatment for locally advanced cervical cancer involves chemo-radiation followed by brachytherapy. However, some patients are unable to undergo brachytherapy intensification. Recent advancements in radiation technology have provided several techniques, with stereotactic body radiation therapy (SBRT) theoretically able to mimic the dose distribution of brachytherapy with a high dose gradient. METHODS We analyzed 20 high-dose-rate intra-cavity brachytherapy plans for women with cervical cancer and simulated an adjunctive stereotactic radiotherapy plan at the same doses used for brachytherapy (21 Gray [Gy] in three fractions). No planning tumoral volume (PTV) margin was added for SBRT dosimetry. We used the dose constraints for brachytherapy from the EMBRACE trial and the dose constraints for SBRT in three fractions. Dose distribution, maximum dose points on target volumes, bladder, rectum, and dose-volume histograms were compared between the two techniques. RESULTS The mean volume of the high-risk clinical tumoral volume (CTV) was 64 cm3, and the mean volume of the intermediate-risk CTV was 93 cm3. The mean minimum dose received by 90% of the high-risk CTV (D90 CTV HR) was 17 Gy for brachytherapy versus 8.3 Gy for SBRT. The average minimum dose received by 90% of the intermediate-risk CTV (D90 CTV IR) was 7.5 Gy for brachytherapy versus 8.9 Gy for SBRT. The mean minimum dose delivered to 2cc of the bladder was 74.6 Gy for brachytherapy versus 84.7 Gy for SBRT. The mean minimum dose delivered to 2cc of the rectum was 71.8 Gy for brachytherapy versus 74.7 Gy for SBRT. CONCLUSION We confirmed the dosimetric superiority of brachytherapy over SBRT in terms of target volume coverage and organ-at-risk sparing. Therefore, pending the results of further clinical studies, no current radiotherapy technique can replace brachytherapy for cervical cancer boost after external radiotherapy.
Collapse
Affiliation(s)
- Zineb Dahbi
- Radiotherapy, International University Hospital Cheikh Khalifa, Mohammed VI University of Health Sciences (UM6SS), Casablanca, MAR
- Medicine, Mohammed VI Polytechnic University, Benguerir, MAR
| | - Kouhen Fadila
- Radiation Oncology, International University Hospital Cheikh Khalifa, Mohammed VI University of Health Sciences (UM6SS), Casablanca, MAR
| | - Vincent Vinh-Hung
- Radiation Oncology, University Hospital of Martinique, Fort-de-France, MTQ
| |
Collapse
|
6
|
Mazonakis M, Tzanis E, Lyraraki E, Damilakis J. Automatic Radiobiological Comparison of Radiation Therapy Plans: An Application to Gastric Cancer. Cancers (Basel) 2022; 14:cancers14246098. [PMID: 36551582 PMCID: PMC9776876 DOI: 10.3390/cancers14246098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Aim: This study was conducted to radiobiologically compare radiotherapy plans for gastric cancer with a newly developed software tool. (2) Methods: Treatment planning was performed on two computational phantoms simulating adult male and female patients. Three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans for gastric cancer were generated with three-photon beam energies. The equivalent uniform dose (EUD), tumor control probability (TCP) of the target and normal tissue control probability (NTCP) of eight different critical organs were calculated. A new software was employed for these calculations using the EUD-based model and dose-volume-histogram data. (3) Results: The IMRT and VMAT plan led to TCPs of 51.3-51.5%, whereas 3D-CRT gave values up to 50.2%. The intensity-modulated techniques resulted in NTCPs of (5.3 × 10-6-3.3 × 10-1)%. The corresponding NTCPs from 3D-CRT were (3.4 × 10-7-7.4 × 10-1)%. The above biological indices were automatically calculated in less than 40 s with the software. (4) Conclusions: The direct and quick radiobiological evaluation of radiotherapy plans is feasible using the new software tool. The IMRT and VMAT reduced the probability of the appearance of late effects in most of the surrounding critical organs and slightly increased the TCP compared to 3D-CRT.
Collapse
Affiliation(s)
- Michalis Mazonakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, 71003 Iraklion, Greece
- Correspondence:
| | - Eleftherios Tzanis
- Department of Medical Physics, Faculty of Medicine, University of Crete, 71003 Iraklion, Greece
| | - Efrossyni Lyraraki
- Department of Radiation Oncology, University Hospital of Iraklion, 71110 Iraklion, Greece
| | - John Damilakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, 71003 Iraklion, Greece
| |
Collapse
|