1
|
Chen H, Dong H, He R, Gu M, Zhao X, Song K, Zou W, Jia N, Liu W. Optimizing predictions: improved performance of preoperative gadobenate-enhanced MRI hepatobiliary phase features in predicting vessels encapsulating tumor clusters in hepatocellular carcinoma-a multicenter study. Abdom Radiol (NY) 2024; 49:3412-3426. [PMID: 38713432 DOI: 10.1007/s00261-024-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Vessels Encapsulating Tumor Clusters (VETC) are now recognized as independent indicators of recurrence and overall survival in hepatocellular carcinoma (HCC) patients. However, there has been limited investigation into predicting the VETC pattern using hepatobiliary phase (HBP) features from preoperative gadobenate-enhanced MRI. METHODS This study involved 252 HCC patients with confirmed VETC status from three different hospitals (Hospital 1: training set with 142 patients; Hospital 2: test set with 64 patients; Hospital 3: validation set with 46 patients). Independent predictive factors for VETC status were determined through univariate and multivariate logistic analyses. Subsequently, these factors were used to construct two distinct VETC prediction models. Model 1 included all independent predictive factors, while Model 2 excluded HBP features. The performance of both models was assessed using the Area Under the Curve (AUC), Decision Curve Analysis, and Calibration Curve. Prediction accuracy between the two models was compared using Net Reclassification Improvement (NRI) and Integrated Discriminant Improvement (IDI). RESULTS CA199, IBIL, shape, peritumoral hyperintensity on HBP, and arterial peritumoral enhancement were independent predictors of VETC. Model 1 showed robust predictive performance, with AUCs of 0.836 (training), 0.811 (test), and 0.802 (validation). Model 2 exhibited moderate performance, with AUCs of 0.813, 0.773, and 0.783 in the respective sets. Calibration and decision curves for both models indicated consistent predictions between predicted and actual VETC, benefiting HCC patients. NRI showed Model 1 increased by 0.326, 0.389, and 0.478 in the training, test, and validation sets compared to Model 2. IDI indicated Model 1 increased by 0.036, 0.028, and 0.025 in the training, test, and validation sets compared to Model 2. CONCLUSION HBP features from preoperative gadobenate-enhanced MRI can enhance the predictive performance of VETC in HCC.
Collapse
Affiliation(s)
- Huilin Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hui Dong
- Department of Pathology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ruilin He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengting Gu
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China
| | - Xingyu Zhao
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China
| | - Kairong Song
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wenjie Zou
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China
| | - Ningyang Jia
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Wanmin Liu
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China.
| |
Collapse
|
2
|
Qu Q, Liu Z, Lu M, Xu L, Zhang J, Liu M, Jiang J, Gu C, Ma Q, Huang A, Zhang X, Zhang T. Preoperative Gadoxetic Acid-Enhanced MRI Features for Evaluation of Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma: Creating Nomograms for Risk Assessment. J Magn Reson Imaging 2024; 60:1094-1110. [PMID: 38116997 DOI: 10.1002/jmri.29187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Vessels encapsulating tumor cluster (VETC) and microvascular invasion (MVI) have a synergistic effect on prognosis assessment and treatment selection of hepatocellular carcinoma (HCC). Preoperative noninvasive evaluation of VETC and MVI is important. PURPOSE To explore the diagnosis value of preoperative gadoxetic acid (GA)-enhanced magnetic resonance imaging (MRI) features for MVI, VETC, and recurrence-free survival (RFS) in HCC. STUDY TYPE Retrospective. POPULATION 240 post-surgery patients with 274 pathologically confirmed HCC (allocated to training and validation cohorts with a 7:3 ratio) and available tumor marker data from August 2014 to December 2021. FIELD STRENGTH/SEQUENCE 3-T, T1-, T2-, diffusion-weighted imaging, in/out-phase imaging, and dynamic contrast-enhanced imaging. ASSESSMENT Three radiologists subjectively reviewed preoperative MRI, evaluated clinical and conventional imaging features associated with MVI+, VETC+, and MVI+/VETC+ HCC. Regression-based nomograms were developed for HCC in the training cohort. Based on the nomograms, the RFS prognostic stratification system was further. Follow-up occurred every 3-6 months. STATISTICAL TESTS Chi-squared test or Fisher's exact test, Mann-Whitney U-test or t-test, least absolute shrinkage and selection operator-penalized, multivariable logistic regression analyses, receiver operating characteristic analysis, Harrell's concordance index (C-index), Kaplan-Meier plots. Significance level: P < 0.05. RESULTS In the training group, 44 patients with MVI+ and 74 patients with VETC+ were histologically confirmed. Three nomograms showed good performance in the training (C-indices: MVI+ vs. VETC+ vs. MVI+/VETC+, 0.892 vs. 0.848 vs. 0.910) and validation (C-indices: MVI+ vs. VETC+ vs. MVI+/VETC+, 0.839 vs. 0.810 vs. 0.855) cohorts. The median follow-up duration for the training cohort was 43.6 (95% CI, 35.0-52.2) months and 25.8 (95% CI, 16.1-35.6) months for the validation cohort. Patients with either pathologically confirmed or nomogram-estimated MVI, VETC, and MVI+/VETC+ suffered higher risk of recurrence. DATA CONCLUSION GA-enhanced MRI and clinical variables might assist in preoperative estimation of MVI, VETC, and MVI+/VETC+ in HCC. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Qi Qu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Zixin Liu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Mengtian Lu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jiyun Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Qinrong Ma
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Aina Huang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Wang F, Numata K, Funaoka A, Liu X, Kumamoto T, Takeda K, Chuma M, Nozaki A, Ruan L, Maeda S. Establishment of nomogram prediction model of contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for vessels encapsulating tumor clusters pattern of hepatocellular carcinoma. Biosci Trends 2024; 18:277-288. [PMID: 38866488 DOI: 10.5582/bst.2024.01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
To establish clinical prediction models of vessels encapsulating tumor clusters (VETC) pattern using preoperative contrast-enhanced ultrasound (CEUS) and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging (EOB-MRI) in patients with hepatocellular carcinoma (HCC). A total of 111 resected HCC lesions from 101 patients were included. Preoperative imaging features of CEUS and EOB-MRI, postoperative recurrence, and survival information were collected from medical records. The best subset regression and multivariable Cox regression were used to select variables to establish the prediction model. The VETC-positive group had a statistically lower survival rate than the VETC-negative group. The selected variables were peritumoral enhancement in the arterial phase (AP), hepatobiliary phase (HBP) on EOB-MRI, intratumoral branching enhancement in the AP of CEUS, intratumoral hypoenhancement in the portal phase of CEUS, incomplete capsule, and tumor size. A nomogram was developed. High and low nomogram scores with a cutoff value of 168 points showed different recurrence-free survival rates and overall survival rates. The area under the curve (AUC) and accuracy were 0.804 and 0.820, respectively, indicating good discrimination. Decision curve analysis showed a good clinical net benefit (threshold probability > 5%), while the Hosmer-Lemeshow test yielded excellent calibration (P = 0.6759). The AUC of the nomogram model combining EOB-MRI and CEUS was higher than that of the models with EOB-MRI factors only (0.767) and CEUS factors only (0.7). The nomogram verified by bootstrapping showed AUC and calibration curves similar to those of the nomogram model. The Prediction model based on CEUS and EOB-MRI is effective for preoperative noninvasive diagnosis of VETC.
Collapse
Affiliation(s)
- Feiqian Wang
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Akihiro Funaoka
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Xi Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Takafumi Kumamoto
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Kazuhisa Takeda
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Litao Ruan
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shin Maeda
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Xiong SP, Wang CH, Zhang MF, Yang X, Yun JP, Liu LL. A multi-parametric prognostic model based on clinicopathologic features: vessels encapsulating tumor clusters and hepatic plates predict overall survival in hepatocellular carcinoma patients. J Transl Med 2024; 22:472. [PMID: 38762511 PMCID: PMC11102615 DOI: 10.1186/s12967-024-05296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Vessels encapsulating tumor clusters (VETC) is a newly described vascular pattern that is distinct from microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Despite its importance, the current pathological diagnosis report does not include information on VETC and hepatic plates (HP). We aimed to evaluate the prognostic value of integrating VETC and HP (VETC-HP model) in the assessment of HCC. METHODS A total of 1255 HCC patients who underwent radical surgery were classified into training (879 patients) and validation (376 patients) cohorts. Additionally, 37 patients treated with lenvatinib were studied, included 31 patients in high-risk group and 6 patients in low-risk group. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to establish a prognostic model for the training set. Harrell's concordance index (C-index), time-dependent receiver operating characteristics curve (tdROC), and decision curve analysis were utilized to evaluate our model's performance by comparing it to traditional tumor node metastasis (TNM) staging for individualized prognosis. RESULTS A prognostic model, VETC-HP model, based on risk scores for overall survival (OS) was established. The VETC-HP model demonstrated robust performance, with area under the curve (AUC) values of 0.832 and 0.780 for predicting 3- and 5-year OS in the training cohort, and 0.805 and 0.750 in the validation cohort, respectively. The model showed superior prediction accuracy and discrimination power compared to TNM staging, with C-index values of 0.753 and 0.672 for OS and disease-free survival (DFS) in the training cohort, and 0.728 and 0.615 in the validation cohort, respectively, compared to 0.626 and 0.573 for TNM staging in the training cohort, and 0.629 and 0.511 in the validation cohort. Thus, VETC-HP model had higher C-index than TNM stage system(p < 0.01).Furthermore, in the high-risk group, lenvatinib alone appeared to offer less clinical benefit but better disease-free survival time. CONCLUSIONS The VETC-HP model enhances DFS and OS prediction in HCC compared to traditional TNM staging systems. This model enables personalized temporal survival estimation, potentially improving clinical decision-making in surveillance management and treatment strategies.
Collapse
Affiliation(s)
- Si-Ping Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China
| | - Chun-Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Mei-Fang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
5
|
Chen HL, He RL, Gu MT, Zhao XY, Song KR, Zou WJ, Jia NY, Liu WM. Nomogram prediction of vessels encapsulating tumor clusters in small hepatocellular carcinoma ≤ 3 cm based on enhanced magnetic resonance imaging. World J Gastrointest Oncol 2024; 16:1808-1820. [PMID: 38764811 PMCID: PMC11099422 DOI: 10.4251/wjgo.v16.i5.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Vessels encapsulating tumor clusters (VETC) represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma (HCC). However, it seems that no one have focused on predicting VETC status in small HCC (sHCC). This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC (≤ 3 cm) patients. AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients. METHODS A total of 309 patients with sHCC, who underwent segmental resection and had their VETC status confirmed, were included in the study. These patients were recruited from three different hospitals: Hospital 1 contributed 177 patients for the training set, Hospital 2 provided 78 patients for the test set, and Hospital 3 provided 54 patients for the validation set. Independent predictors of VETC were identified through univariate and multivariate logistic analyses. These independent predictors were then used to construct a VETC prediction model for sHCC. The model's performance was evaluated using the area under the curve (AUC), calibration curve, and clinical decision curve. Additionally, Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence, just as it is with the actual VETC status and early recurrence. RESULTS Alpha-fetoprotein_lg10, carbohydrate antigen 199, irregular shape, non-smooth margin, and arterial peritumoral enhancement were identified as independent predictors of VETC. The model incorporating these predictors demonstrated strong predictive performance. The AUC was 0.811 for the training set, 0.800 for the test set, and 0.791 for the validation set. The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets. Furthermore, the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC. Finally, early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group, regardless of whether considering the actual or predicted VETC status. CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC (≤ 3 cm) patients, and it holds potential for predicting early recurrence. This model equips clinicians with valuable information to make informed clinical treatment decisions.
Collapse
Affiliation(s)
- Hui-Lin Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Shanghai 200438, China
| | - Rui-Lin He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng-Ting Gu
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| | - Xing-Yu Zhao
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| | - Kai-Rong Song
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Shanghai 200438, China
| | - Wen-Jie Zou
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| | - Ning-Yang Jia
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Shanghai 200438, China
| | - Wan-Min Liu
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| |
Collapse
|
6
|
Zhao Y, Liu Y, Liu Z, Ren K, Jiao D, Ren J, Wu P, Li X, Wang Z, Han X. In Situ Nanofiber Patch Boosts Postoperative Hepatocellular Carcinoma Immune Activation by Trimodal Combination Therapy. ACS NANO 2024; 18:245-263. [PMID: 38117780 PMCID: PMC10786167 DOI: 10.1021/acsnano.3c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Poor clinical efficacy associated with postoperative hepatocellular carcinoma (HCC) often results from recurrence and metastasis. Hence, research has focused on establishing an effective multimodal therapy. However, complex combinations of active ingredients require multiple functions in therapeutic systems. Herein, a portable nanofiber patch composing germanium phosphorus (GeP) and anlotinib (AL) was designed to form a versatile platform for molecularly targeted photothermal-immune checkpoint blockade (ICB) trimodal combination therapy. The patches possess hydrophilic, satisfactory mechanical, and excellent photothermal conversion properties. Moreover, they achieve a penetrating and sustained drug release. The near-infrared light-assisted GeP-induced temperature increase regulates AL release, downregulating the expression of vascular-related factor receptors, triggering immunogenic cell death of tumor cells, and inducing dendritic cell maturation. Simultaneously, ICB therapy (programmed cell death ligand 1, PD-L1) was introduced to improve treatment outcomes. Notably, this trimodal combination therapy significantly inhibits vascular hypergrowth, enhances effector T-cell infiltration, and sensitizes the PD-L1 antibody response, boosting immunotherapy to suppress residual HCC recurrence and metastasis. Further validation of the genome sequencing results revealed cell pathways related primarily to regulatory immune effects. This study demonstrates the use of an effective and practical nanofiber patch to improve multimodal therapy of postoperative HCC, with high clinical translation value.
Collapse
Affiliation(s)
- Yanan Zhao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yiming Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Zaoqu Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Kewei Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Dechao Jiao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Jianzhuang Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Ping Wu
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhouguang Wang
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinwei Han
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Liu K, Dennis C, Prince DS, Marsh-Wakefield F, Santhakumar C, Gamble JR, Strasser SI, McCaughan GW. Vessels that encapsulate tumour clusters vascular pattern in hepatocellular carcinoma. JHEP Rep 2023; 5:100792. [PMID: 37456680 PMCID: PMC10339254 DOI: 10.1016/j.jhepr.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023] Open
Abstract
Vessels that encapsulate tumour clusters (VETC) is a distinct histologic vascular pattern associated with a novel mechanism of metastasis. First described in human cancers in 2004, its prevalence and prognostic significance in hepatocellular carcinoma (HCC) has only been appreciated in the past decade with a rapidly increasing body of literature. A robust biomarker of aggressive disease, the VETC pattern is easy to recognise but relies on histologic examination of tumour tissue for its diagnosis. Radiological recognition of the VETC pattern is an area of active research and is becoming increasingly accurate. As a prognostic marker, VETC has consistently proven to be an independent predictor of disease recurrence and overall survival in patients with HCC undergoing resection and liver transplantation. It can also guide treatment by predicting response to other therapies such as transarterial chemoembolisation and sorafenib. Without prospective randomised-controlled trials or routine evaluation of VETC in clinical practice, there are currently no firm treatment recommendations for VETC-positive tumours, although some perspectives are provided in this review based on the latest knowledge of their pathogenesis - a complex interplay between tumour angiogenesis and the immune microenvironment. Nevertheless, VETC has great potential as a future biomarker that could take us one step closer to precision medicine for HCC.
Collapse
Affiliation(s)
- Ken Liu
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
| | - Claude Dennis
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David S. Prince
- Department of Gastroenterology, Liverpool Hospital, Sydney, NSW, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
- Human Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Cositha Santhakumar
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
- Human Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer R. Gamble
- Centre for Endothelium, Vascular Biology Program, Centenary Institute, Sydney, NSW, Australia
| | - Simone I. Strasser
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
| |
Collapse
|