1
|
Mikhailova E, Popov A, Roumiantseva J, Budanov O, Lagoyko S, Zharikova L, Miakova N, Litvinov D, Khachatryan L, Pshonkin A, Ponomareva N, Boichenko E, Varfolomeeva S, Dinikina J, Novichkova G, Henze G, Karachunskiy A. Blinatumomab as postremission therapy replaces consolidation and substantial parts of maintenance chemotherapy and results in stable MRD negativity in children with newly diagnosed B-lineage ALL. J Immunother Cancer 2024; 12:e008213. [PMID: 38844406 PMCID: PMC11163637 DOI: 10.1136/jitc-2023-008213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
The bispecific T cell-binding antibody blinatumomab (CD19/CD3) is widely and successfully used for the treatment of children with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Here, we report the efficacy of a single course of blinatumomab instead of consolidation chemotherapy to eliminate minimal residual disease (MRD) and maintain stable MRD-negativity in children with primary BCP-ALL.Between February 2020 and November 2022, 177 children with non-high-risk BCP-ALL were enrolled in the ALL-MB 2019 pilot study (NCT04723342). Patients received the usual risk-adapted induction therapy according to the ALL-MB 2015 protocol. Those who achieved a complete remission at the end of induction (EOI) received treatment with blinatumomab immediately after induction at a dose of 5 μg/m2/day for 7 days and 21 days at a dose of 15 μg/m2/day, followed by 12 months of maintenance therapy. MRD was measured using multicolor flow cytometry (MFC) at the EOI, then immediately after blinatumomab treatment, and then four times during maintenance therapy at 3-month intervals.All 177 patients successfully completed induction therapy and achieved a complete hematological remission. In 174 of these, MFC-MRD was measured at the EOI. 143 patients (82.2%) were MFC-MRD negative and the remaining 31 patients had varying degrees of MFC-MRD positivity.MFC-MRD was assessed in all 176 patients who completed the blinatumomab course. With one exception, all patients achieved MFC-MRD negativity after blinatumomab, regardless of the MFC-MRD score at EOI. One adolescent girl with high MFC-MRD positivity at EOI remained MFC-MRD positive. Of 175 patients who had completed 6 months of maintenance therapy, MFC-MRD data were available for 156 children. Of these, 155 (99.4%) were MFC-MRD negative. Only one boy with t(12;21) (p13;q22)/ETV6::RUNX1 became MFC-MRD positive again. The remaining 174 children had completed the entire therapy. MFC-MRD was examined in 154 of them, and 153 were MFC-MRD negative. A girl with hypodiploid BCP-ALL showed a reappearance of MFC-MRD with subsequent relapse.In summary, a single 28-day course of blinatumomab immediately after induction, followed by 12 months of maintenance therapy, is highly effective in achieving MRD-negativity in children with newly diagnosed non-high risk BCP-ALL and maintaining MRD-negative remission at least during the treatment period.
Collapse
Affiliation(s)
- Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Julia Roumiantseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Oleg Budanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Svetlana Lagoyko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Liudmila Zharikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Natalia Miakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Dmitry Litvinov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Lili Khachatryan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Pshonkin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | | | - Elmira Boichenko
- City Children's Hospital No 1, Saint Petersburg, Russian Federation
| | | | - Julia Dinikina
- Almazov National Medical Research Center, Saint Petersburg, Russian Federation
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Guenter Henze
- Pediatric Hematology and Oncology, Ernst Moritz Arndt University Greifswald Faculty of Medicine, Greifswald, Mecklenburg-Vorpommern, Germany
- Pediatric Hematology and Oncology, Charite Medical Faculty Berlin, Berlin, Berlin, Germany
| | - Alexander Karachunskiy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
2
|
Verbeek MWC, van der Velden VHJ. The Evolving Landscape of Flowcytometric Minimal Residual Disease Monitoring in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:4881. [PMID: 38732101 PMCID: PMC11084622 DOI: 10.3390/ijms25094881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Detection of minimal residual disease (MRD) is a major independent prognostic marker in the clinical management of pediatric and adult B-cell precursor Acute Lymphoblastic Leukemia (BCP-ALL), and risk stratification nowadays heavily relies on MRD diagnostics. MRD can be detected using flow cytometry based on aberrant expression of markers (antigens) during malignant B-cell maturation. Recent advances highlight the significance of novel markers (e.g., CD58, CD81, CD304, CD73, CD66c, and CD123), improving MRD identification. Second and next-generation flow cytometry, such as the EuroFlow consortium's eight-color protocol, can achieve sensitivities down to 10-5 (comparable with the PCR-based method) if sufficient cells are acquired. The introduction of targeted therapies (especially those targeting CD19, such as blinatumomab or CAR-T19) introduces several challenges for flow cytometric MRD analysis, such as the occurrence of CD19-negative relapses. Therefore, innovative flow cytometry panels, including alternative B-cell markers (e.g., CD22 and CD24), have been designed. (Semi-)automated MRD assessment, employing machine learning algorithms and clustering tools, shows promise but does not yet allow robust and sensitive automated analysis of MRD. Future directions involve integrating artificial intelligence, further automation, and exploring multicolor spectral flow cytometry to standardize MRD assessment and enhance diagnostic and prognostic robustness of MRD diagnostics in BCP-ALL.
Collapse
Affiliation(s)
| | - Vincent H. J. van der Velden
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Ramalingam TR, Vaidhyanathan L, Muthu A, Swaminathan VV, Uppuluri R, Raj R. Deciphering stage 0 hematogones by flow cytometry in follow-up bone marrow samples of pediatric B-Acute lymphoblastic leukemia cases: A potential mimicker of residual disease after anti CD19 therapy. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:92-98. [PMID: 38243626 DOI: 10.1002/cyto.b.22159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
CD19 is frequently targeted for immunotherapy in B cell malignancies, which may result in loss of CD19 expression in leukemic cells as an escape mechanism. Stage 0 hematogones (Hgs) are normal CD19-negative very early B cell precursors that can be potentially mistaken for CD19 negative residual leukemic cells by flow cytometry (FCM) in B cell acute lymphoblastic leukemia (BCP-ALL) cases treated with anti CD19 therapy. Our main objective was to characterize and study the incidence of stage 0 hematogones in follow-up bone marrow samples of pediatric BCP-ALL cases. We analyzed the flow cytometry standard files of 61 pediatric BCP-ALL cases treated with conventional chemotherapy and targeted anti-CD19 therapy, for identifying the residual disease and normal B cell precursors including stage 0 Hgs. A non-CD19 alternate gating strategy was used to isolate the B cells for detecting the residual disease and stage 0 Hgs. The stage 0 Hgs were seen in 95% of marrow samples containing CD19+ Hgs. When compared with controls and posttransplant marrow samples, the fraction of stage 0 Hgs was higher in patients receiving anti CD19 therapy (p = 0.0048), but it was not significant when compared with patients receiving chemotherapy (p = 0.1788). Isolated stage 0 Hgs are found in samples treated with anti-CD19 therapy simulating CD19 negative residual illness. Our findings aid in understanding the stage 0 Hgs and its association with CD19+ Hgs in anti CD19 therapy and conventional chemotherapy. This is crucial as it can be potentially mistaken for residual disease in patients treated with anti CD19 therapy.
Collapse
Affiliation(s)
| | | | - Anurekha Muthu
- Department of Hematology, Apollo Cancer Centre, Chennai, India
| | | | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Cancer Centre, Chennai, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Cancer Centre, Chennai, India
| |
Collapse
|
4
|
Lin M, Zhao X, Chang Y, Zhao X. Current assessment and management of measurable residual disease in patients with acute lymphoblastic leukemia in the setting of CAR-T-cell therapy. Chin Med J (Engl) 2024; 137:140-151. [PMID: 38148315 PMCID: PMC10798764 DOI: 10.1097/cm9.0000000000002945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 12/28/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-modified T-cell therapy has achieved remarkable success in the treatment of acute lymphoblastic leukemia (ALL). Measurable/minimal residual disease (MRD) monitoring plays a significant role in the prognostication and management of patients undergoing CAR-T-cell therapy. Common MRD detection methods include flow cytometry (FCM), polymerase chain reaction (PCR), and next-generation sequencing (NGS), and each method has advantages and limitations. It has been well documented that MRD positivity predicts a poor prognosis and even disease relapse. Thus, how to perform prognostic evaluations, stratify risk based on MRD status, and apply MRD monitoring to guide individual therapeutic decisions have important implications in clinical practice. This review assesses the common and novel MRD assessment methods. In addition, we emphasize the critical role of MRD as a prognostic biomarker and summarize the latest studies regarding MRD-directed combination therapy with CAR-T-cell therapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT), as well as other therapeutic strategies to improve treatment effect. Furthermore, this review discusses current challenges and strategies for MRD detection in the setting of disease relapse after targeted therapy.
Collapse
Affiliation(s)
- Minghao Lin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaosu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
5
|
Grubliauskaite M, van der Perk MEM, Bos AME, Meijer AJM, Gudleviciene Z, van den Heuvel-Eibrink MM, Rascon J. Minimal Infiltrative Disease Identification in Cryopreserved Ovarian Tissue of Girls with Cancer for Future Use: A Systematic Review. Cancers (Basel) 2023; 15:4199. [PMID: 37686475 PMCID: PMC10486797 DOI: 10.3390/cancers15174199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ovarian tissue cryopreservation and transplantation are the only available fertility techniques for prepubertal girls with cancer. Though autotransplantation carries a risk of reintroducing malignant cells, it can be avoided by identifying minimal infiltrative disease (MID) within ovarian tissue. METHODS A broad search for peer-reviewed articles in the PubMed database was conducted in accordance with PRISMA guidelines up to March 2023. Search terms included 'minimal residual disease', 'cryopreservation', 'ovarian', 'cancer' and synonyms. RESULTS Out of 542 identified records, 17 were included. Ovarian tissues of at least 115 girls were evaluated and categorized as: hematological malignancies (n = 56; 48.7%), solid tumors (n = 42; 36.5%) and tumors of the central nervous system (n = 17; 14.8%). In ovarian tissue of 25 patients (21.7%), MID was detected using RT-qPCR, FISH or multicolor flow cytometry: 16 of them (64%) being ALL (IgH rearrangements with/without TRG, BCL-ABL1, EA2-PBX1, TEL-AML1 fusion transcripts), 3 (12%) Ewing sarcoma (EWS-FLI1 fusion transcript, EWSR1 rearrangements), 3 (12%) CML (BCR-ABL1 fusion transcript, FLT3) and 3 (12%) AML (leukemia-associated immunophenotypes, BCR-ABL1 fusion transcript) patients. CONCLUSION While the majority of malignancies were found to have a low risk of containing malignant cells in ovarian tissue, further studies are needed to ensure safe implementation of future fertility restoration in clinical practice.
Collapse
Affiliation(s)
- Monika Grubliauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Department of Biobank, National Cancer Institute, Santariskiu Str. 1, LT-08406 Vilnius, Lithuania
| | | | - Annelies M. E. Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Reproductive Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Zivile Gudleviciene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Child Health, UMCU-Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
6
|
Semchenkova A, Zhogov V, Zakharova E, Mikhailova E, Illarionova O, Larin S, Novichkova G, Karachunskiy A, Maschan M, Popov A. Flow cell sorting followed by PCR-based clonality testing may assist in questionable diagnosis and monitoring of acute lymphoblastic leukemia. Int J Lab Hematol 2023. [PMID: 36871952 DOI: 10.1111/ijlh.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Multicolor flow cytometry (MFC) has highly reliable and flexible algorithms for diagnosis and monitoring of acute lymphoblastic leukemia (ALL). However, MFC analysis can be affected by poor sample quality or novel therapeutic options (e.g., targeted therapies and immunotherapy). Therefore, an additional confirmation of MFC data may be needed. We propose a simple approach for validation of MFC findings in ALL by sorting questionable cells and analyzing immunoglobulin/T-cell receptor (IG/TR) gene rearrangements via EuroClonality-based multiplex PCR. PATIENTS AND METHODS We obtained questionable MFC results for 38 biological samples from 37 patients. In total, 42 cell populations were isolated by flow cell sorting for downstream multiplex PCR. Most of the patients (n = 29) had B-cell precursor ALL and were investigated for measurable residual disease (MRD); 79% of them received CD19-directed therapy (blinatumomab or CAR-T). RESULTS We established the clonal nature of 40 cell populations (95.2%). By using this technique, we confirmed very low MRD levels (<0.01% MFC-MRD). We also applied it to several ambiguous findings for diagnostic samples, including those with mixed-phenotype acute leukemia, and the results obtained impacted the final diagnosis. CONCLUSION We have demonstrated possibilities of a combined approach (cell sorting and PCR-based clonality assessment) to validate MFC findings in ALL. The technique is easy to implement in diagnostic and monitoring workflows, as it does not require isolation of a large number of cells and knowledge of individual clonal rearrangements. We believe it provides important information for further treatment.
Collapse
Affiliation(s)
- Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Zhogov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Zakharova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga Illarionova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Sergey Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Karachunskiy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|